首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We have examined the effect of phorbol esters and cAMP elevating compounds on tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) secretion. Phorbol esters induce a time- and dose-dependent increase in tPA release from endothelial cells, while forskolin, isobutylmethylxanthine, dibutyryl cAMP, and 8-bromo-cAMP had no significant stimulatory effect on tPA secretion. However, elevation of cAMP simultaneously with phorbol ester treatment potentiated the phorbol ester-induced release of tPA 6 times from 22.2 ng/ml with phorbol myristate acetate (PMA) alone to 122.1 ng/ml (PMA and forskolin). Potentiation was dose-dependent (half-maximal potentiation = 4 microM forskolin), and tPA release was enhanced at all stimulatory concentrations of PMA with no change in the PMA concentrations causing half-maximal or maximum tPA release. The kinetics of release was also similar in PMA versus PMA-forskolin-treated cells. A 4-h delay was observed, enhanced release was transient, and was followed by the onset of a refractory period. In contrast, elevation of cAMP reduced constitutive secretion of PAI-1 by 30-40% and prevented the increase in PAI-1 secretion stimulated by PMA. Elevated cAMP also decreased the rate of PAI-1 deposition into the endothelial substratum. These studies indicate that activation of a cAMP-dependent pathway(s) in coordination with phorbol ester-induced responses plays a central role in modifying the tPA and PAI-1 secretion from endothelial cells, leading to a profibrinolytic state in the endothelial environment.  相似文献   

3.
OVCA 433 human ovarian carcinoma cells secrete both mammalian plasminogen activators (PAs) urokinase (UK) and tissue-type PA (tPA). Treatment of cells with 4 beta-phorbol-12-myristate-13-acetate (PMA), a stimulator of protein kinase C (PKC), leads to large increases in the secretion rates of both PA types. PA stimulation by PMA is time- and concentration-dependent, with maximal effects occurring between 12 and 24 h at PMA concentrations of 1-10 ng/ml. The PMA effect is mimicked by mezerein, another known PKC stimulator, but not by 4 alpha-phorbol or 4 alpha-phorbol-12,13-didecanoate, two phorbol compounds that do not stimulate PKC. PA activity is virtually unaffected by 1-oleoyl-2-acetylglycerol (OAG), a synthetic diacylglycerol that stimulates PKC in vitro but has variable effects on whole cells. PMA stimulation of PA activity is blocked by both actinomycin D and cycloheximide, indicating requirements for new RNA and protein synthesis. When analyzed individually, the relative PMA-induced increases in UK and tPA activities are identical. Increased UK activity is fully accounted for by increased UK antigen secretion, whereas increased tPA secretion accounts for only about one-half of the increased tPA activity. Similarly, PMA induces large increases in steady-state UK mRNA levels, while its effects on tPA mRNA levels are only modest. Thus, while increases in secretion rates and mRNA levels can completely account for UK stimulation, other mechanisms augmenting these processes must exist specifically for tPA. Since the relative increases in UK and tPA activities are identical despite the probable existence of multiple mechanisms contributing to tPA regulation, our data suggest the possibility of interrelationships between the two pathways such that equivalent degrees of UK and tPA activity stimulation are ultimately achieved.  相似文献   

4.
5.
6.
7.
The influence of diacylglycerols, which are physiological activators of protein kinase C, on the production of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) was studied in order to gain insight into the regulation of fibrinolysis by these cells. 1,2-dioctanoyl-sn-glycerol (diC8) stimulated tPA production in a dose- and time-dependent manner. The tPA antigen in cell supernatants increased from 0.9 ng/10(6) cells in unstimulated cells to 12.4 ng (10(6) cells after incubation with 400 microM diC8 for 24 hours. In contrast, PAI-1 production was not influenced by diC8, whereas phorbol 12-myristate 13-acetate (PMA) or thrombin stimulated both, tPA and PAI-1 production by HUVEC. Staurosporine and H7, which are inhibitors of protein kinase C, inhibited tPA synthesis by HUVEC. The degree of inhibition was dependent on the agonist used. While diC8-induced tPA production was inhibited to more than 80% by H7 (10 microM) and staurosporine (10 nM), higher doses of inhibitors were required to inhibit thrombin- and PMA-induced tPA production. Thrombin-induced PAI-1 production was inhibited to more than 80% by H7 (10 microM) and to about 50% by staurosporine, whereas PMA-induced PAI-1 production was not inhibited by staurosporine, and only to about 50% by higher doses of H7 (30 microM). These data suggest that activation of protein kinase C is a common intracellular trigger mechanism for the induction of tPA synthesis by HUVEC. Protein kinase C is most likely also involved in the regulation of PAI-1 synthesis by HUVEC.  相似文献   

8.
9.
We studied the effect of the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA), which activates protein kinase-C, on porcine granulosa cells in culture. PMA as well as cholera toxin, forskolin, and hCG increased cAMP accumulation. PMA further augmented the elevation in cAMP accumulation induced by cholera toxin, forskolin, and hCG. In the same cell culture model, hCG induced a time-dependent increase in the 3 beta-hydroxy-5-ene steroid dehydrogenase (3 beta HSD) mRNA levels with a maximal 3-fold stimulation obtained at 8-16 h of incubation with 1 IU hCG/ml. PMA inhibited the increase in 3 beta HSD mRNA levels induced by hCG in a dose-dependent manner. The phorbol ester also inhibited the increase in 3 beta HSD mRNA levels stimulated by LH as well as cholera toxin and forskolin and the cAMP analogs (Bu)2cAMP and 8-bromo-cAMP. Activation of protein kinase-C by mezerein similarly inhibited hCG stimulation of 3 beta HSD mRNA levels. The present data indicate that activation of the protein kinase-C pathway induces generation of cAMP, but causes a near-complete inhibition of the stimulatory effects of hCG, LH, forskolin, cholera toxin, and cAMP analogs on 3 beta HSD mRNA levels in porcine granulosa cells in culture.  相似文献   

10.
The immunologic effects of bryostatin (Bryo), a PKC activator with antineoplastic activity, were assessed and compared to PMA. Bryo induced IL-2R expression on CD4+ and CD8+ human T lymphocytes with a dose response comparable to PMA. However, Bryo induced only a marginal proliferative response as compared with the vigorous response induced by PMA. Bryo mediated functional receptor expression because the proliferative response was enhanced by addition of rIL-2. Furthermore, the proliferative response was inhibited by the relatively specific Ca+, phospholipid-dependent protein kinase (PKC) inhibitor, H-7, indicating a role of PKC in Bryo-induced activation. Addition of the calcium ionophore, ionomycin, to Bryo-stimulated lymphocytes resulted in the production and secretion of IL-2 with a concomitant proliferative response. This effect of the calcium ionophore could be inhibited by cyclosporine with identical results obtained in PMA-stimulated cultures. A most intriguing finding was that Bryo could effectively antagonize PMA-induced T cell proliferation. Although this mechanism of inhibition is unclear, a discussion with respect to differential effects on potential intracellular PKC isoforms is provided. These studies indicated that Bryo has potent immunopotentiating properties that share some similar effects of the phorbol ester, PMA, but offers the additional property of modulating other phorbol ester effects on proliferation.  相似文献   

11.
Phorbol ester treatment induces the phosphorylation of SNAP-25 at Ser(187) and the potentiation of Ca(2+)-induced dopamine (DA) and acetylcholine (Ach) release from PC12 cells. In order to evaluate the functional consequences of phosphorylation, quantitative analysis was carried out using an anti-phosphopeptide antibody that specifically recognizes SNAP-25 phosphorylated at Ser(187). DA and ACh release, assayed in low-K(+) as well as high-K(+) solution, increased by treating the cells with phorbol-12-myristate-13-acetate (PMA); however, the stimulation of high-K(+)-dependent release occurred at lower concentrations and with shorter exposures to PMA than that of the basal release in low-K(+)-solution. The PMA-induced phosphorylation of SNAP-25 did not correlate with the potentiation of high-K(+)-dependent neurotransmitter release. The potentiation of high-K(+)-dependent DA release by phorbol 12,13-diacetate (PDA), a water soluble phorbol ester, almost completely disappeared within 1 min after washing PDA in the presence of okadaic acid, conditions under which the phosphorylation of SNAP-25 persisted for at least 15 min. PMA-induced phosphorylation of SNAP-25 was inhibited by staurosporine, however, the potentiation of high-K(+)-dependent DA release was suppressed only partially. These results indicate that protein kinase activation does not account for a large fraction of the phorbol ester-induced potentiation of depolarization-dependent neurotransmitter release from PC12 cells.  相似文献   

12.
The effects of two putative inhibitors of protein kinase C activity, staurosporine and H-7, on partially purified protein kinase C and amylase secretion from isolated rabbit pancreatic acini were investigated. Staurosporine dose-dependently inhibited amylase release stimulated by an optimal concentration of cholecystokinin C-terminal octapeptide. At a concentration of 100 nM, the drug inhibited the secretory response to the secretagogue by approximately 50%. At the same concentration, staurosporine inhibited 12-O-tetradecanoylphorbol 13-acetate-stimulated enzyme secretion by 90%. Moreover, the potentiating effect of this phorbol ester on cholecystokinin-induced amylase release was completely abolished in the presence of staurosporine. Interestingly, amylase release was decreased to the level observed with the combination of cholecystokinin and staurosporine. In contrast, H-7, potentiated rather than inhibited cholecystokinin-stimulated enzyme secretion, whereas the secretory response to 12-O-tetradecanoylphorbol 13-acetate was not affected by the drug. Both staurosporine and H-7, however, inhibited protein kinase C purified from exocrine pancreatic tissue. Kinetic analysis revealed that both compounds inhibited protein kinase C competitively with respect to ATP. The Ki value for staurosporine was 0.55 nM and for H-7 13.5 microM. Our results obtained with staurosporine are in line with a stimulatory role of protein kinase C in cholecystokinin-induced enzyme secretion from the exocrine pancreas. The results obtained with H-7 emphasize that care has to be taken in interpreting the biological effects of this drug.  相似文献   

13.
Tumor-promoting phorbol esters and histamine induce tissue plasminogen activator (tPA) release from human endothelial cells in a dose- and time-dependent manner. Phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu) increased tPA concentration in the culture medium by eight to 12 times after 24 h with half-maximal stimulation at 13 and 55 nM, respectively. Maximum release by histamine was only half that of the phorbol esters and required 18 microM for half-maximal response. Kinetics of enhanced release was similar with both types of agonists: a 4-h lag period followed by a period of rapid release (4 h in PMA-treated and 10 h in histamine-treated cultures) followed by a decline toward pretreatment rates. The PMA and histamine effects were additive while histamine and thrombin, which also stimulates tPA release in human endothelial cells, were no more effective together than they were alone. Exposure of the cells to PMA, PDBu, or phorbol 12,13-didecanoate caused a loss of responsiveness to second treatment of the homologous agent that was time- and dose-dependent, sustained, and specific to active tumor promoters (half-maximal desensitization = 52 nM PDBu). A partial desensitized state was also established by histamine which resulted in a 60% lower response to a second challenge dose. Histamine-induced desensitization did not interfere with the PMA response. However, PMA-induced desensitization caused a 75% loss of the histamine and a 67% loss of the thrombin effects. These studies indicate that tumor promoters are potent agonists of tPA release from human endothelial cells and establish a desensitized state to further stimulation. Treatment of these cells with histamine has similar effects which may be mediated at least in part by pathways common to phorbol ester stimulation.  相似文献   

14.
15.
16.
The effects of forskolin (FSK) and phobol 12-myristate-13-acetate (PMA) on c-fos and c-jun mRNA expressions in rat C6 glioma cells were studied. Both FSK and PMA increased the c-fos mRNA level. The C-jun mRNA level was decreased by FSK, whereas it was increased by PMA. The elevated c-fos mRNA level, induced by FSK or PMA, was significantly inhibited by dexamethasone (DEX). In contrast, DEX did not affect the FSK- and PMA-induced response of the c-jun mRNA level. Cycloheximide (CHX) caused a superinduction of the FSK- or PMA-induced c-fos mRNA level. Furthermore, CHX also potentiated the PMA-induced c-jun mRNA level. However, CHX did not affect the FSK-induced down-regulation of the c-jun mRNA level. When C6 glioma cells were incubated with PMA and FSK, the PMA-induced c-jun mRNA level was inhibited by FSK, whereas FSK did not affect the PMA-induced c-fos mRNA level. Our results suggest that the activations of PKA and PKC pathways have different roles in the regulation of the c-jun mRNA expression in rat C6 glioma cells. PKA activation can inhibit induction of the c-jun mRNA expression by PMA. In addition, DEX appears to have a selective inhibitory action against c-fos, but not c-jun, -mRNA expression that is regulated by PKA and PKC. On-going protein synthesis inhibition is required for the superinduction of the c-fos expression that is induced by PMA, or FSK and the PMA-induced c-jun mRNA level.  相似文献   

17.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

18.
Using rapid deenergization as a probe for adenylate deaminase activity in intact adult rat cardiac myocytes, we have previously established that IMP formation is enhanced by alpha-adrenergic agonists. In the present study, the effect of adrenergic agents on adenylate deaminase was further characterized. Phenylephrine (PE)3 increased IMP production in a dose-dependent fashion with an EC50 of 8 x 10(-7) M. The response to PE was reversed within 10 min by the alpha 1-antagonist, prazosin. Likewise, adenylate deaminase was also activated in ventricular myocytes challenged with phorbol 12-myristate 13-acetate (PMA, EC50 = 5 nM); cardiac cells presented with 100 nM PMA increased IMP production from 4.4 +/- 0.5 (control) to 15.7 +/- 0.9 nmol/mg protein when subsequently deenergized. The effects of PMA and PE were attenuated 85 +/- 5% and 96 +/- 4%, respectively, by pretreatment of cells with 150 nM staurosporine, an inhibitor of protein kinase C. Furthermore, incubation of cardiac cells with 1 microM PMA for 24 h blunted the response to both PMA and phenylephrine 85-90%. Elevating cyclic AMP (cAMP) content to greater than 15 pmol/mg by treatment with forskolin or isoproterenol plus isobutylmethylxanthine also resulted in enhanced adenylate deaminase activity, but this stimulatory effect was not abolished by 24 h incubation with 5 microM PMA. Forskolin and PMA-induced increases in IMP production appeared to be additive. However, 0.5 microM isoproterenol inhibited the cellular response to phenylephrine by about 30% but did not affect PMA-stimulated adenylate deaminase activity. We conclude that both cAMP and protein kinase C stimulate adenylate deaminase, perhaps through selective activation of different isoforms. However, cAMP also exerts partial inhibition on alpha-adrenoreceptor-mediated increases in IMP production.  相似文献   

19.
Fibroblasts represent one of the in vivo sites of insulin-like growth factor-I (IGF-I) production. In this study rat dermal fibroblasts in culture were used as a model system to assess the effect of activation of protein kinase-C on the levels of the mRNAs encoding IGF-I and another growth factor, basic fibroblast growth factor (bFGF). IGF-I and bFGF mRNA levels were determined using a solution hybridization/RNase protection assay. Treatment of cells in serum-free medium containing 0.25% BSA (MEM + BSA) with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) decreased IGF-I and increased bFGF mRNA levels in a time- and dose-dependent fashion. The peak effect of 100 nM PMA on IGF-I mRNA levels occurred at 9 h, whereas the peak effect on bFGF mRNA levels occurred after 3 h of incubation. In dose-response studies, half-maximal inhibition of IGF-I mRNA levels was achieved with approximately 0.08 nM PMA, while half-maximal stimulation of bFGF mRNA levels was achieved with approximately 3 nM PMA. Inhibition of protein synthesis with cycloheximide abrogated the effect of PMA on bFGF mRNA levels, but only partially inhibited the effect of PMA on IGF-I mRNA levels. Studies employing sphingosine or staurosporine to inhibit protein kinase-C or preincubation in high doses of PMA to down-regulate protein kinase-C suggested that the effect of PMA on IGF-I and bFGF mRNA levels was mediated by activation of protein kinase-C, although both staurosporine and sphingosine had independent effects on the levels of these mRNAs and down-regulation of protein kinase-C had a sustained effect on IGF-I mRNA levels. Ligands known to activate protein kinase-C were then tested. Treatment of cells with 100 micrograms/ml of the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol decreased IGF-I mRNA levels to 25% and increased bFGF mRNA levels to 520% of the level present in cells maintained in MEM + BSA. Treatment of cells with thrombin or bradykinin also decreased IGF-I mRNA levels and increased bFGF mRNA levels, but whereas the effect of thrombin on IGF-I mRNA levels was marked, the effect of bradykinin was minimal, and whereas the effect of thrombin on bFGF mRNA levels was sustained, the effect of bradykinin was transient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Highly charged polyanionic ligands of the scavenger receptor trigger macrophage secretion of urokinase-type plasminogen activator (uPA). In experiments reported here, we have investigated the intracellular and extracellular regulation of polyanion-induced macrophage plasminogen activation. Exposure of a macrophage cell line (RAW264.7) to either fucoidan or phorbol myristate acetate (PMA) stimulates the secretion of uPA, whereas calcium ionophore or dibutyryl cyclic AMP had no effect. Moreover, preincubation of macrophages with inhibitors of protein kinase C reduced (50-60%) the ability of both fucoidan and PMA to trigger the secretion of uPA, whereas aspirin and eicosatetraenoic acid had no effect. Both PMA and fucoidan treatment of RAW264.7 cells resulted in a rapid and transient increase in the steady state levels of uPA mRNA. However, in marked contrast to that observed with PMA, fucoidan-induced expression of RAW264.7 uPA activity was partially insensitive to cycloheximide and actinomycin D. In addition, fucoidan-induced uPA activity was detected in conditioned media in as little as 15 min, whereas PMA-induced uPA activity did not increase until 2 h. In addition to stimulating macrophage secretion of uPA, fucoidan bound uPA and had a small stimulatory affect on uPA activity. The binding does not interfere with the catalytic site on the B chain, or require the receptor binding or kringle domains on the A chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号