首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the maturation phase of spermiogenesis in mice, the spermatid heads that are embedded deeply in the epithelium of the seminiferous tubules dislocate toward the luminal surface. In the present study, to clarify the manner in which the spermatid head is displaced toward the lumen, morphological changes in spermatids and Sertoli cells were examined on ultrathin and thick sections stained with adenosine triphosphatase cytochemistry. During adluminal displacement, the spermatid head is surrounded by an invading process of Sertoli cell which invaginates into the spermatid cytoplasm to form complicated passages called the canal complex. At the site of the spermatid head, the wall of an invading Sertoli cell process folds to form a sheath in which the spermatid head is located. The sheath correspond to a structure known as ectoplasmic specialization. The invading Sertoli cell process also shows branching and swelling at the site where spermatid heads are present. The present results suggest that the canal complex is directly involved in the adluminal displacement of the spermatid head. Dynamic changes of invading Sertoli cell processes may produce the motive force for adluminal displacment of the spermatid head. Also, ectoplasmic specialization may contribute to the adluminal displacement of the spermatid possibly by mediating cell to cell interaction between the spermatid nucleus and the invading Sertoli cell process.  相似文献   

2.
The Sertoli cell ectoplasmic specialization is a unique junctional structure involved in the interaction between elongating spermatids and Sertoli cells. We have previously shown that suppression of testicular testosterone in adult rats by low-dose testosterone and estradiol (TE) treatment causes the premature detachment of step 8 round spermatids from the Sertoli cell. Because these detaching round spermatids would normally associate with the Sertoli cell via the ectoplasmic specialization, we hypothesized that ectoplasmic specializations would be absent in the seminiferous epithelium of TE-treated rats, and the lack of this junction would cause round spermatids to detach. In this study, we investigated Sertoli cell ectoplasmic specializations in normal and TE-treated rat testis using electron microscopy and localization of known ectoplasmic specialization-associated proteins (espin, actin, and vinculin) by immunocytochemistry and confocal microscopy. In TE-treated rats where round spermatid detachment was occurring, ectoplasmic specializations of normal morphology were observed opposite the remaining step 8 spermatids in the epithelium and, importantly, in the adluminal Sertoli cell cytoplasm during and after round spermatid detachment. When higher doses of testosterone were administered to promote the reattachment of all step 8 round spermatids, newly elongating spermatids associated with ectoplasmic specialization proteins within 2 days. We concluded that the Sertoli cell ectoplasmic specialization structure is qualitatively normal in TE-treated rats, and thus the absence of this structure is unlikely to be the cause of round spermatid detachment. We suggest that defects in adhesion molecules between round spermatids and Sertoli cells are likely to be involved in the testosterone-dependent detachment of round spermatids from the seminiferous epithelium.  相似文献   

3.
Hinsch GW 《Tissue & cell》1993,25(5):743-749
With the onset of spermiogenesis, many changes become apparent in the crayfish spermatid during its transition to mature sperm. The nucleus passes through a series of stages, excess cytoplasm is removed, the acrosome develops, and nuclear arms form and become wrapped around the sperm prior to its enclosure in a capsule. Changes are also apparent in the Sertoli cells surrounding the germ cells in the crayfish testis. The amount of cytoplasm of individual Sertoli cells appears to increase in quantity and changes in the intracellular organelles become apparent. As spermiogenesis commences, the cytoplasm along one side of Sertoli cells adjacent to the spermatids is devoid of obvious organelles. Numerous finger/like projections of Sertoli cytoplasm penetrate into the spermatid and appear to isolate portions of the sperm cytoplasm. During later stages of spermiogenesis, several vesicles in the Sertoli cells which appear to contain droplets of this isolated sperm cytoplasm. appear to undergo lytic changes, As the amount of cytoplasm of the spermatid is reduced, contact is maintained between the spermatid and Sertoli cell in the area of the acrosome. The nuclear arms of the sperm extend into the Sertoli cell during their formation and later become wrapped around the acrosomal area of the sperm. At this time, very little space exists between the Sertoli cell and its many sperm. Large vesicles of electron dense material appear to be released by the Sertoli cells into the space between the sperm and Sertoli cell. This material completely surrounds the sperm and forms the sperm capsule. Spermiation involves the gradual dissolution of the points of contact between the sperm capsule and the Sertoli cell.  相似文献   

4.
The process of spermiation in the ratfish Hydrolagus colliei is described and compared with that in mammals and amphibians. Spermiation in this species involves prior fluid space expansion both within the apical parts of the Sertoli cytoplasm and in the spaces between Sertoli cells and spermatids. The apical ends of Sertoli cells fragment, including the parts immediately around the spermatid acrosomes. Intercellular material between the spermatid tips and the Sertoli cells dissolves. Concurrently an opening from the seminiferous follicle into the efferent ductule is made by means of changes in cell shape and separation of Sertoli cells and efferent ductule cells that adhere to each other up to the time of sperm release.  相似文献   

5.
Sertoli cells in the ratfish entirely surround a clone of spermatids to form a spermatocyst. As spermiogenesis proceeds within the cyst cavity, the acrosome areas become apposed to the Sertoli cell plasma membrane lining the spermatocyst. The spermatids elongate and are gathered into an increasingly compact bundle oriented with acrosomal tips directed toward the Sertoli cell base. As all acrosome areas move closer together, Sertoli cell microfilaments oriented parallel to the long spermatid axis appear and increase in concentration. Actin and myosin were demonstrated in the microfilament area with fluorescent antibodies and NBD-Phallacidin. Simultaneously, endocytosis of Sertoli cell membrane between spermatid attachment sites removes the intervening membrane and allows the latter sites to approach each other. Sertoli cell endocytosis is spatially and temporally related to a unique projection at the basal rim of each acrosome. During midspermiogenesis, structured intercellular material appears between the Sertoli cell and the acrosomal region of each spermatid. Its periodicity is closely related to periodic arrangement of Sertoli cell actin and material within the spermatids. These attachment sites move together upon endocytosis, gathering a clone of spermatids into a closely packed bundle.  相似文献   

6.
Summary The morphology of the bovine Sertoli cell was studied during 6 different phases of the spermatogenetic cycle. Tubular dimensions do not vary significantly during the phases. Sertoli cells occupy 27.0% (phase 4) to 38.4% (phase 8) of the tubular epithelium. Sertoli cells of phase 1 are approximately 20% larger than during the other phases. 30–35% of Sertoli cell volume consists of organelles. Mitochondrial (about 5.0%) and nuclear (about 5.7%) volume densities remain remarkably stable during the cycle, irrespective of changes in Sertoli cell size. Phagocytic capacity of bovine Sertoli cells is only moderate. Elimination of excess spermatid cytoplasm occurs to a large extent prior to spermiation. The majority of spermatid residual bodies undergoes autolytic decay while attached to the Sertoli cell apical surface. Aggregates of densely packed cisternae of the smooth endoplasmic reticulum (ER) located in a basal position and associated with the acrosome-phase and maturation-phase spermatids contribute between 14 and 17% to Sertoli cell volume. During phase 3 the ER pinches off a large number of small, smooth-walled vesicles filled with flocculent content. The contact area between Sertoli cells and other tubular constituents changes considerably during the different phases. It is concluded that the blood-testis barrier is particularly impassable during phases 1 and 8. A lipid cycle does not exist in the bovine testicular tubular epithelium.  相似文献   

7.
Tubulobulbar complexes may be part of the mechanism by which intercellular adhesion junctions are internalized by Sertoli cells during sperm release. These complexes develop in regions where Sertoli cells are attached to adjacent cells by intercellular adhesion junctions termed ectoplasmic specializations. At sites where Sertoli cells are attached to spermatid heads, tubulobulbar complexes consist of fingerlike processes of the spermatid plasma membrane, corresponding invaginations of the Sertoli cell plasma membrane, and a surrounding cuff of modified Sertoli cell cytoplasm. At the terminal ends of the complexes occur clusters of vesicles. Here we show that tubulobulbar complexes develop in regions previously occupied by ectoplasmic specializations and that the structures share similar molecular components. In addition, the adhesion molecules nectin 2 and nectin 3, found in the Sertoli cell and spermatid plasma membranes, respectively, are concentrated at the distal ends of tubulobulbar complexes. We also demonstrate that double membrane bounded vesicles are associated with the ends of tubulobulbar complexes and nectin 3 is present on spermatids, but is absent from spermatozoa released from the epithelium. These results are consistent with the conclusion that Sertoli cell and spermatid membrane adhesion domains are internalized together by tubulobulbar complexes. PKCalpha, a kinase associated with endocytosis of adhesion domains in other systems, is concentrated at tubulobulbar complexes, and antibodies to endosomal and lysosomal (LAMP1, SGP1) markers label the cluster of vesicles associated with the ends of tubulobulbar complexes. Our results are consistent with the conclusion that tubulobulbar complexes are involved with the disassembly of ectoplasmic specializations and with the internalization of intercellular membrane adhesion domains during sperm release.  相似文献   

8.
Nuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm ad shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope. The acroplaxome consists of a marginal ring containing keratin 5 10-nm-thick filaments and F-actin. The ring is closely associated with the leading edge of the acrosome and to the nuclear envelope during the elongation of the spermatid head. Anchorage of the acroplaxome to the gradually shaping nucleus is not disrupted by hypotonic treatment and brief Triton X-100 extraction. By examining spermiogenesis in the azh mutant mouse, characterized by abnormal spermatid/sperm head shaping, we have determined that a deformity of the spermatid nucleus is restricted to the acroplaxome region. These findings lead to the suggestion that the acroplaxome nucleates an F-actin-keratin-containing assembly with the purpose of stabilizing and anchoring the developing acrosome during spermatid nuclear elongation. The acroplaxome may also provide a mechanical planar scaffold modulating external clutching forces generated by a stack of Sertoli cell F-actin-containing hoops encircling the elongating spermatid nucleus.  相似文献   

9.
10.
The fine structure of the spermatogonia, spermatocytes, spermatids, the Sertoli cell and the epithelial cells of the mesorchial sheath is described. In an early spermatid stage a transient close relationship between the Chromatoid body and the acrosome is demonstrated.  相似文献   

11.
Rai14 (retinoic acid induced protein 14) is an actin binding protein first identified in the liver, highly expressed in the placenta, the testis, and the eye. In the course of studying actin binding proteins that regulate the organization of actin filament bundles in the ectoplasmic specialization (ES), a testis-specific actin-rich adherens junction (AJ) type, Rai14 was shown to be one of the regulatory proteins at the ES. In the rat testis, Rai14 was found to be expressed by Sertoli and germ cells, structurally associated with actin and an actin cross-linking protein palladin. Its expression was the highest at the ES in the seminiferous epithelium of adult rat testes, most notably at the apical ES at the Sertoli-spermatid interface, and expressed stage-specifically during the epithelial cycle in stage VII-VIII tubules. However, Rai14 was also found at the basal ES near the basement membrane, associated with the blood-testis barrier (BTB) in stage VIII-IX tubules. A knockdown of Rai14 in Sertoli cells cultured in vitro by RNAi was found to perturb the Sertoli cell tight junction-permeability function in vitro, mediated by a disruption of F-actin, which in turn led to protein mis-localization at the Sertoli cell BTB. When Rai14 in the testis in vivo was knockdown by RNAi, defects in spermatid polarity and adhesion, as well as spermatid transport were noted mediated via changes in F-actin organization and mis-localization of proteins at the apical ES. In short, Rai14 is involved in the re-organization of actin filaments in Sertoli cells during the epithelial cycle, participating in conferring spermatid polarity and cell adhesion in the testis.  相似文献   

12.
In this study, we report sites in the seminiferous epithelium of the rat testis that are immunoreactive with antibodies to the intermediate chain of cytoplasmic dynein and kinesin II. The study was done to determine whether or not microtubule-dependent motor proteins are present in Sertoli cell regions involved with spermatid translocation. Sections and epithelial fragments of perfusion-fixed rat testis were probed with an antibody (clone 74.1) to the intermediate chain of cytoplasmic dynein (IC74) and to kinesin-II. Labeling with the antibody to cytoplasmic dynein was dramatically evident in Sertoli cell regions surrounding apical crypts containing attached spermatids and known to contain unique intercellular attachment plaques. The antibody to kinesin II reacted only with spermatid tails. The levels of cytoplasmic dynein visible on immunoblots of supernatants collected from spermatid/junction complexes treated with an actin-severing enzyme (gelsolin) were greater than those of controls, indicating that at least some of the dynein may have been associated with Sertoli cell junction plaques attached to spermatids. Results are consistent with the conclusion that an isoform of cytoplasmic dynein may be responsible for the apical translocation of elongate spermatids that occurs before sperm release. Also, this is the first report of kinesin-II in mammalian spermatid tails.  相似文献   

13.
Germ cell maturation in the reproductive tract of the soupfin shark (Galeorhinus galeus) was studied using scanning electron microscopy (SEM). The SEM showed changes in Sertoli cytoplasm volume during spermatogenic development. In immature spermatocysts in the germinal zone, spermatogonia were embedded in Sertoli cytoplasm. In spermatogonial spermatocysts, Sertoli cells were adluminally located in the spermatocyst, with spermatogonia enveloped in the basal portions of the cytoplasm. During the round spermatid stage, Sertoli cytoplasm was very scanty. Spermatid elongation was accompanied by a progressive increase in the volume of Sertoli cytoplasm, notably around the spermatid heads. In the mature spermatocyst, bundles of spermatozoa are totally enveloped by Sertoli cytoplasm. Spermatozoa occurred randomly in the epididymis. However, in the ampulla ductus deferentis, spermatozoa reaggregated and were embedded in a mucoid substance to form highly ordered spherical bundles. In the sperm bundle, the spermatozoa heads were arranged such that the helical turns of adjacent spermatozoa were precisely aligned, and all the heads in the bundle formed a distinct apex. This study demonstrates the utility of exploring the relationship between germ cells and Sertoli cells in an evolutionarily ancient vertebrate, such as the shark.  相似文献   

14.
From the present study of the rdw rat, it is clear that the thyroid hormone is essential for the development and maintenance of the testes. In previous studies, the thyroid hormone has few serious effects on the testes except during the neonatal stage when the thyroid hormone receptor is mainly present. However, there is little knowledge concerning the prolonged effect of thyroid hormone deficiency throughout the rat's life span. In the present study, a morphological analysis was performed on the testes of rdw rats with congenital hypothyroidism. The rdw testes required a longer time to develop into the normal adult structure. Moreover, the developed, normal structure began to degenerate after full maturation. Specific characteristics of the rdw testes include: (i) a prolonged proliferation of Sertoli cells during postnatal development; (ii) a developmental delay in the appearance of spermatocytes and spermatid; (iii) direct contact with each other for both spermatocytes and spermatids, without Sertoli cell cytoplasm completely intervening between adjacent germ cells; (iv) subsequent apoptosis of germ cells after maturation; (v) reduction in the height of the seminiferous epithelium; and (vi) lower testosterone levels in the rdw rats, especially during old age. Thus, we conclude that the thyroid hormone plays an important role in developing and maintaining normal function of testes.  相似文献   

15.
Summary In the present study the distribution of various sugar residues in the cells of the male gonad during postnatal organogenesis was examined employing eight lectin-horseradish peroxidase conjugates (BS-I, ConA, DBA, PNA, RCA-I, SBA, UEA-I, WGA) on paraffin-embedded testicular tissue. The tissue was obtained from bull calves and young bulls of recorded age (4, 8, 16, 20, 25, 30, 40 and 52 weeks) and two adult bulls. During the whole observation period, lectin affinity in the developing testicular tubules was restricted to the germ cell line, while the Sertoli cells and their precursors remained completely unstained. DBA, a lectin with specific affinity to -d-GalNAc, served as a selective marker for prespermatogonia (PSG), the only precursors of bovine spermatogonia until the onset of spermatogenesis at week 30. -d-GalNAc, detected in the PSG Golgi zone and its vicinity, seems to play an important role during PSG proliferation and migration in the prepuberal testis. Concomitant with the differentiation of PSG into spermatogonia, the binding intensity of DBA to the Golgi zone of these cells decreased. After the gradual onset of spermatogenesis, the lectins revealed staining of Golgi complexes of most germ cell stages. Glycosylation of the cell components takes place in the Golgi complex, which explains the strong affinity of the lectins to this cell compartment. Inner and outer membrane of the acrosomal complex of spermatids, especially during Golgi and cap phase of spermiogenesis, were intensely stained with PNA, RCA-I and SBA. This staining disappeared in the maturation phase at the latest and indicates a role of terminal d-Gal-(13)-d-GalNAc, d-Gal and d-GalNAc during the formation of the sperm head and intraepithelial orientation of the spermatid. Other parts of the spermatid, such as the anulus and the cytoplasmic droplet, exhibited d-Gal, d-GlcNAc or sialic acid and d-GalNAc. In the intertubular tissue BS-I, RCA-I and UEA-I bound to vascular endothelia. Components of the intertubular extracellular matrix were stained with ConA (-d-Man), RCA-I (d-Gal), UEA-I (-l-Fuc) and WGA (d-GlcNAc or sialic acid).  相似文献   

16.
A histochemical, microdensitometric, and electron microscopic study of testes of the ratfish Hydrolagus colliei shows that an instance of the rare phenomenon of germ line chromatin diminution occurs in this vertebrate species. In primary spermatocytes at metaphase I a spherical mass of heterochromatin accumulates at one side of the metaphase plate. At anaphase I the heterochromatic mass is left in the equatorial cytoplasm and is passed into one of the two secondary spermatocytes formed during cytokinesis. As nuclear membranes are being restored, a double membrane envelope is also formed around the heterochromatic mass, which is then termed the ‘chromatin diminution body’ (CDB). At second meiotic division the CDB is included in the cytoplasm of one of the four spermatids and retained there, apparently unchanged, until mid-spermiogenesis. At that time the CDB becomes adherent to the spermatid plasma membrane and is pinched off from the spermatid by a process of apocrine exocytosis, taking a layer of spermatid plasma membrane along with it. Simultaneously this tri-membrane CDB is taken into the adjacent Sertoli cell by endocytosis, thereby acquiring a fourth membrane layer, a part of the Sertoli cell plasma membrane. The CDBs are subsequently phagocytized, possibly first fusing with dense, multilaminate bodies in the Sertoli cell cytoplasm. The CDB chromatin mass is strongly positive with the Feulgen method for DNA and the alkaline fast green method for histones. Microdensitometric analysis shows that the discarded chromatin amounts to about 10% of the diploid nuclear content and that it appears to be part of the normal diploid complement rather than DNA amplified during meiosis.  相似文献   

17.
Summary The volume and surface area of lipid inclusions often present in the cytoplasm of rat Sertoli cells was measured directly from semi-thin sections of perfusion-fixed testicular tissues using an image analyser linked to a light microscope. Sertoli cell nuclei were used as a reference for comparing any variations in the measured parameters of lipid inclusions during the rat spermatogenic cycle. Volume density of Sertoli cell lipid inclusions was assessed by morphometric analysis of Sertoli cells photographically reconstructed from electron micrographs. Maximum lipid content in Sertoli cells occurred during stages IX–XIV of the spermatogenic cycle, then declined at stages I–III and remained low from stages IV–VIII. The persistence and increase in number of many large Sertoli cell lipid inclusions beyond the stage where spermatid residual bodies are phagocytosed within the Sertoli cells (stage IX) suggests that the synthesis and lipolysis of Sertoli cell lipid inclusions represents an intrinsic functional cycle of the Sertoli cells. Stage-dependent variations in the lipid content of rat Sertoli cells offers morphological evidence that the metabolic duties of the Sertoli cells are synchronised with the spermatogenic cycle to provide local coordination of the proliferation and maturation of the germ cells.  相似文献   

18.
Hinsch GW 《Tissue & cell》1993,25(5):737-742
The testes of the crayfish, Procambarus paeninsulanus, were prepared for light and transmission electron microscopy. During early stages of spermatogenesis, when the spermatogonia are dividing, processes from a single Sertoli cell extend between numerous spermatogonia. As the cells enter meiosis, many points of contact can be observed between the Sertoli cell processes and spermatocytes. These desmosome-gap junctions are maintained between the germ and Sertoli cells until the early spermatid stage.  相似文献   

19.
Sulfated glycoprotein-1 (SGP-1) is a polypeptide secreted by Sertoli cells in the rat. Sequence analysis revealed a 76% sequence similarity with human prosaposin produced by various cell types. Human prosaposin is a 70 kDa protein which is cleaved in the lysosomes into four 10–15 kDa polypeptides termed saposins A, B, C, and D. The function of lysosomal saposins is to either solubilize certain membrane glycolipids or to form complexes with lysosomal enzymes and/or their glycolipid substrate to facilitate their hydrolysis. The present investigation dealt with the delivery of SGP-1 into the phagosomes of Sertoli cells; these phagosomes contain the residual bodies which detach from the late spermatids at the time of spermiation. Immunogold labeling with anti-SGP-1 antibody was found over Sertoli cell lysosomes, but was absent from phagosomes formed after phagocytosis of spermatid residual bodies in the apical Sertoli cell cytoplasm in stages VIII and early IX of the cycle of the seminiferous epithelium. The phagosomes found later in the basal Sertoli cell cytoplasm in stages IX and X of the cycle became labeled with the antibody as the components of the residual bodies rapidly underwent lysis and disappeared from the Sertoli cells. Sertoli cell lysosomes isolated by cell fractionation (estimated purity of 80%) were found to contain a 65 kDa form of SGP-1 or prosaposin, as well as the 15 kDa polypeptides or saposins. Thus, it appears that this unique lysosomal form of SGP-1 reached the Sertoli cell phagosomes and that their derived polypeptides, the saposins, must play a role in the hydrolysis of membrane glycolipids found in phagocytosed residual bodies. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Testes from 37 Holstein bulls, 38-99 mo of age, were used to investigate the relationship of Sertoli cell number, Sertoli cell-germ cell ratios and other related factors to daily sperm production (DSP). DSP was assessed by enumeration of spermatids in testicular homogenates, whereas Sertoli cell and germ cell ratios were based on direct counts in 20 round Stage VIII seminiferous tubular cross sections per bull. Numbers of Sertoli cells were calculated as (total homogenization resistant spermatids:spermatid:Sertoli cell ratio)/0.394; the factor of 0.394 adjusted for the presence of homogenization resistant spermatids during only 39.4% of the spermatogenic cycle. Data were subjected to simple linear and second-order regression analyses. Positive linear relationships were observed between DSP and testicular parenchymal weight (p less than 0.005, R = +0.71), DSP per gram (p less than 0.005, R = +0.79), total Sertoli cells (p less than 0.005, R = +0.83), Sertoli cells per gram (p less than 0.01, R = +0.47) and the yield of Step 8 spermatids per Type A spermatogonium (p less than 0.05, R = +0.34). DSP was not related (p greater than 0.10) to the number of germ cells supported per Sertoli cell. Testicular parenchymal weight and DSP per gram were unrelated to each other (p greater than 0.10), but both were related (p less than 0.005) to the total Sertoli cell number (R = +0.61 and +0.62, respectively). Total number of Sertoli cells accounted for more of the variation in DSP between bulls (R2 = 68.2%) than did any other factor examined. It was suggested that total Sertoli cell number may be an important determinant of a bull's spermatogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号