首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide adenine dinucleotide phosphate (reduced form) is formed more rapidly after the addition of thiosulfate to suspensions of intact Thiobacillus neapolitanus in the absence of CO(2) than nicotinamide adenine dinucleotide (reduced form). Measurement of acid-stable metabolites shows this phenomenon to be the result of rapid reoxidation of nicotinamide adenine dinucleotide (reduced form) by 3-phosphoglyceric acid and other oxidized intermediates, which are converted to triose and hexose phosphates, and that, in reality, the rate of nicotinamide adenine dinucleotide (oxidized form) reduction exceeds that of nicotinamide adenine dinucleotide phosphate (oxidized form) by approximately 4.5-fold. The overall rate of pyridine nucleotide reduction by thiosulfate (264 nmol per min per mg of protein) is in excess of that rate needed to sustain growth. Pyridine nucleotide reduction, adenosine triphosphate synthesis, and carbohydrate synthesis are prevented by the uncoupler m-Cl-Carbonylcyanide phenylhydrazone. Sodium amytal inhibits pyridine nucleotide reduction and carbohydrate synthesis are prevented by the uncoupler m-Cl-carbonylcyanide observations are reproduced when sulfide serves as the substrate. The rate of pyridine nucleotide anaerobic reduction with endogenous substrates or thiosulfate is less than 1% of the aerobic rate with thiosulfate. We conclude that the principal, if not the only, pathway of pyridine nucleotide reduction proceeds through an energy-dependent and amytal-sensitive step when either thiosulfate or sulfide is used as the substrate.  相似文献   

2.
Poly(A) polymerase was extracted from isolated nuclei of rat liver and a rapidly growing solid tumor (Morris hepatoma 3924A). The enzyme from each tissue was purified by successive chromatography on DEAE-Sephadex, phosphoecllulose, hydroxyapatite and QAE-Sephadex. Purified enzyme from both liver and tumor was essentially homogeneous as judged by polyacrylamide gel electrophoresis. Under nondenaturing conditions, enzyme activity corresponded to visible protein and, upon denaturation, a single polypeptide was detected. The enzymes had absolute requirements for Mn2+ as the divalent ion, ATP as the substrate and an oligonucleotide or polynucleotide as the primer. Both enzymes were inhibited by sodium pyrophosphate, N-ethylmaleimide, Rose Bengal, cordycepin 5'-triphosphate and several rifamycin derivatives. The reactions were unaffected by potassium phosphate, alpha-amanitin and pancreatic ribonuclease. However, the liver and hepatoma enzymes differed from each other with respect to apparent Km, primer saturation levels and sensitivity to pH changes. The most striking differences between the enzymes were in their calculated molecular weights (liver, 48000; hepatoma, 60000) and amino acid compositions. Finally, the level of the hepatoma enzyme relative to that of the liver enzyme was at least 1.5-fold higher when expressed per mg DNA.  相似文献   

3.
A mutant of Neurospora crassa (cni-1) has been isolated that has two pathways of mitochondrial respiration. One pathway is sensitive to cyanide and antimycin A, the other is sensitive only to salicyl hydroxamic acid. Respiration can proceed through either pathway and both pathways together in this mutant account for greater than 90% of all mitochondrial respiration. The cni-1 mutation segregates as a nuclear gene in crosses to other strains of Neurospora. Absorption spectra of isolated mitochondria from cni-1 show typical b- and c-type cytochromes but the absorption peaks corresponding to cytochrome aa(3) are not detectable. Extraction of soluble cytochrome c-546 from these mitochondria followed by reduction with ascorbate reveals a new absorption peak at 426 nm that is not present in wild-type mitochondria. This peak may be due to an altered cytochrome oxidase with abnormal spectral properties. Mitochondria from cni-1 have elevated levels of succinate-cytochrome c reductase but reduced levels of nicotinamide adenine dinucleotide reduced form cytochrome c reductase and of cyanide- and azide-sensitive cytochrome c oxidase. These studies suggest that the cni-1 mutation results in the abnormal assembly of cytochrome c oxidase so that the typical cytochrome aa(3) spectrum is lost and the enzyme activity is reduced. As a consequence of this alteration, a cyanide-insensitive respiratory pathway is elaborated by these mitochondria which may serve to stimulate adenosine 5'-triphosphate production via substrate level phosphorylation by glycolysis and the Krebs cycle.  相似文献   

4.
A nicotinamide adenine dinucleotide-specific L-(+)-lactate dehydrogenase (LDH) (EC 1.11.27) from Actinomyces viscosus T-6-1600 was purified approximately 110-fold by a combination of diethylaminoethyl-cellulose and 0.5 M Agarose A column chromatography. The ldh was stable at 26 C, but was quite labile at temperatures below 5 C. The enzyme had a molecular weight of 100,000 +/- 10,000 as determined by 0.5 M Agarose molecular exclusion chromatography and showed optimum activity between pH 5.5 and 6.2. The A. viscosus LDH exhibited homotropic interactions with its substrate, pyruvate, and its coenzyme, reduced nicotinamide adenine dinucleotide, indicating multiple binding sites on the enzyme for these ligands with some degree of cooperative interaction between them. The enzyme was under negative control by adenosine 5'-triphosphate, and its kinetic response to the negative effector was sigmoidal in nature. Inorganic phosphate reversed the inhibition exerted on the A. viscosus LDH by adenosine. The 5'-triphosphate thermal stability at 65 C of the LDH from A. viscosus was increased in the presence of its negative effector, adenosine 5'-triphosphate, but was markedly decreased in the presence of its coenzyme, reduced nicotinamide adenine dinucleotide. The glycolytic intermediate, fructose-1,6-diphosphate, had no effect on the catalytic activity of the A. viscosus LDH at saturating pyruvate concentrations. However, fructose-1,6-diphosphate was a potent positive effector at low substrate concentrations. Thus the A. viscosus LDH is under positive control by fructose-1,6-diphosphate and inorganic phosphate, but under negative control by adenosine 5'-triphosphate.  相似文献   

5.
The inhibition of T4 polynucleotide kinase by beta,gamma-imidoadenylyl 5'-triphosphate has been investigated. It was found that the ATP analog was a competitive inhibitor with regard to ATP and a noncompetitive inhibitor with regard to DNA possessing a 5'-hydroxyl group. At pH 8.0, the Ki values were 3 and 11 mM, respectively. beta,gamma-imidoadenylyl 5'-triphosphate was not a substrate in the forward reaction, but would replace ADP and ATP in the reverse reaction. The reverse reaction was also used to make beta,gamma-imidoadenylyl 5'-tetraphosphate.  相似文献   

6.
Polynucleotide phosphorylase is a prokaryotic enzyme that catalyzes phosphorolysis of polynucleotides with release of nucleotide diphosphates. By taking advantage of this property, we developed a photometric assay for inorganic phosphate. In the presence of polyadenylic acid, phosphate is converted into adenosine 5'-diphosphate (ADP) by this enzyme. ADP then reacts with phosphoenolpyruvate in a pyruvate kinase-catalyzed reaction, thus giving rise to adenosine 5'-triphosphate and pyruvate. Finally, pyruvate oxidizes reduced nicotinamide adenine dinucleotide (NADH) through the action of L-lactate dehydrogenase, with concomitant decrease in absorbance at 340 nm. As expected, in this detection system 1 mol of NADH was oxidized per mole of phosphate. The assay showed an excellent reproducibility, as the standard deviations never exceeded 5%. It also was shown to be unaffected by several compounds that are regarded as major interferents of the traditional colorimetric assays. Absence of interference was also demonstrated when determining phosphate content in different biological samples, such as human serum and perchloric acid extracts from Escherichia coli, yeast, and bovine liver. An E. coli strain overexpressing His-tagged polynucleotide phosphorylase developed in our laboratories allowed quick and straightforward purification of enzyme, making the assay feasible and convenient. Since all other reagents required are inexpensive, the assay represents a cheaper alternative to commercially available phosphate assay kits.  相似文献   

7.
The kinetics of reduction of the b-type cytochromes in the electron transport particles (ETP) from Mycobacterium phlei were studied with nicotinamide adenine dinucleotide, reduced form (NADH) or succinate as electron donors. There appeared to be three active cytochromes b in the ETP,bS563 and bS559, which were reducible by either substrate, and bN563, which was reducible by NADH but not by succinate. In the presence of adenosine 5'-triphosphate, a substantial increase in b563 reduction was observed with succinate at anaerobiosis. This was followed by a decrease in absorption. Adenosine 5'-triphosphate did not effect an increase in cytochrome b563 reduction at transition with NADH, but the occurrence of a secondary decrease in absorption was reflected in a decrease in total enzymatic reduction. The adenosine 5'-triphosphate effect was altered in trypsin-treated ETP, and abolished by uncoupling agents or by removal of the coupling factor-latent adenosine triphosphatase. In the presence of a supernatant fraction obtained during the preparation of the ETP, b563 reduction with succinate was greatly increased. A smaller increase was observed with NADH. Cytochrome b reduction was also studied in ETP inhibited by 2-n-nonylhydroxyquinoline-N-oxide, which appears to inhibit at bS563. On the basis of these data the interrelationships among the b-type cytochromes can be described in relation to the M. phlei electron transport chain.  相似文献   

8.
A putative role for mammalian polynucleotide kinases that possess both 5'-phosphotransferase and 3'-phosphatase activity is the restoration of DNA strand breaks with 5'-hydroxyl termini or 3'-phosphate termini, or both, to a form that supports the subsequent action of DNA repair polymerases and DNA ligases, i.e. 5'-phosphate and 3'-hydroxyl termini. To further assess this possibility, we compared the activity of the 3'-phosphatase of purified calf thymus polynucleotide kinase towards a variety of substrates. The rate of removal of 3'-phosphate groups from nicked or short (1 nt) gapped sites in double-stranded DNA was observed to be similar to that of 3'-phosphate groups from single-stranded substrates. Thus this activity of polynucleotide kinase does not appear to be influenced by steric accessibility of the phosphate group. We subsequently demonstrated that the concerted reactions of polynucleotide kinase and purified human DNA ligase I could efficiently repair DNA nicks possessing 3'-phosphate and 5'-hydroxyl termini, and similarly the combination of these two enzymes together with purified rat DNA polymerase beta could seal a strand break with a 1 nt gap. With a substrate containing a nick bounded by 3'- and 5'-OH termini, the rate of gap filling by polymerase beta was significantly enhanced in the presence of polynucleotide kinase and ATP, indicating the positive influence of 5'-phosphorylation. The reaction was further enhanced by addition of DNA ligase I to the reaction mixture. This is due, at least in part, to an enhancement by DNA ligase I of the rate of 5'-phosphorylation catalyzed by polynucleotide kinase.  相似文献   

9.
Fluorescence spectroscopy was used to investigate the binding of Escherichia coli recA protein to a single-stranded polynucleotide. Poly(deoxy-1,N6-ethenoadenylic acid) was prepared by reaction of chloroacetaldehyde with poly(deoxyadenylic acid). The fluorescence of poly(deoxy-1,N6-ethenoadenylic acid) was enhanced upon recA protein binding. The kinetics of the binding process were studied as a function of several parameters: ionic concentration (KCl and MgCl2), pH, nature of the nucleoside triphosphate [adenosine 5'-triphosphate or adenosine 5'-O-(gamma-thiotriphosphate)], protein and polynucleotide concentrations, polynucleotide chain length, and order of sequential additions. The observed kinetic curves exhibited a lag phase followed by a slow binding process characteristic of a nucleation-elongation mechanism with an additional slow step governing the rate of the association process. The lag phase reflecting the nucleation step was not observed when the protein was first bound to the polynucleotide before addition of adenosine 5'-triphosphate. Adenosine 5'-triphosphate induced a dissociation of the recA protein, which was immediately followed by binding of the recA-adenosine 5'-triphosphate-Mg2+ ternary complex. The origin of this "mnemonic effect" and of the different kinetic steps is discussed with respect to protein conformational changes and aggregation phenomena.  相似文献   

10.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

11.
3'-end labeling of RNA with recombinant yeast poly(A) polymerase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Two commonly used methods to end-label RNA-molecules are 5'-end labeling by polynucleotide kinase and 3'-end labeling with pCp and T4 RNA ligase. We show here that RNA 3'-ends can also be labeled with the chain-terminating analogue cordycepin 5'-triphosphate (3'-deoxy-ATP) which is added by poly(A) polymerase. For a synthetic RNA it is shown that 40% of cordycepin becomes incorporated when the nucleotide is used at limiting concentrations and that with an excess of cordycepin 5'-triphosphate essentially all the RNA becomes modified at its 3'-end. The reaction is complete within minutes and the RNA product is uniform and suitable for sequence analysis. The efficiency of labeling varies with different RNA-molecules and is different from RNA ligase. Poly(A) polymerase preferentially labels longer RNA-molecules whereas short RNA-molecules are labeled more efficiently by T4 RNA ligase.  相似文献   

12.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyses a reaction in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the protein and isoalloxazine ring during catalysis. Earlier research showed that reduction of FAD occurs when the isoalloxazine of the FAD moves to the surface of the protein to allow hydride transfer from NADPH. This move is coordinated with protein rearrangements that are triggered by deprotonation of buried p-hydroxybenzoate through a H-bond network that leads to the surface of the protein. In this paper, we examine the involvement of this same H-bond network in the oxygen reactions-the initial formation of a flavin-C4a-hydroperoxide from the reaction between oxygen and reduced flavin, the electrophilic attack of the hydroperoxide upon the substrate to form product, and the elimination of water from the flavin-C4a-hydroxide to form oxidized enzyme in association with product release. These reactions were measured through absorbance and fluorescence changes in the FAD during the reactions. Results were collected over a range of pH for the reactions of wild-type enzyme and a series of mutant enzymes with the natural substrate and substrate analogues. We discovered that the rate of formation of the flavin hydroperoxide is not influenced by pH change, which indicates that the proton required for this reaction does not come from the H-bond network. The rate of the hydroxylation reaction increases with pH in a manner consistent with a pK(a) of 7.1. We conclude that the H-bond network abstracts the phenolic proton from p-hydroxybenzoate in the transition state of oxygen transfer. The rate of formation of oxidized enzyme increases with pH in a manner consistent with a pK(a) of 7.1, indicating the involvement of the H-bond network. We conclude that product deprotonation enhances the rate of a specific conformational change required for both product release and the elimination of water from C4a-OH-FAD.  相似文献   

13.
M.c.d. (magnetic-circular-dichroism) spectroscopy was used to study the magnetization properties of the haem centres in cytochrome c oxidase with magnetic fields of between 0 and 5.3 T over the temperature range 1.5--200 K. The oxidized, oxidized cyanide and partially reduced cyanide forms of the enzyme were studied. In the oxidized state only cytochrome a3+ is detectable by m.c.d. spectroscopy, and its magnetization characteristics show it to be a low-spin ferric haem. In the partially reduced cyanide form of the enzyme cytochrome a is in the diamagnetic low-spin ferrous form, whereas cytochrome a3--CN is e.p.r.-detectable and gives an m.c.d.-magnetization curve typical of a low-spin ferric haem. In the oxidized cyanide form of the enzyme both cytochrome a and cytochrome a3--CN are detectable by m.c.d. spectroscopy, although only cytochrome a gives an e.p.r. signal. The magnetization characteristics of haem a3--CN show clearly that its ground state is an electronic doublet and that another state, probably a spin singlet, lies greater than 10 cm-1 above this. These features are well accounted for by an electronic state of spin S = 1 with a predominantly axial distortion, which leaves the doublet, Ms = +/- 1, as the ground state and the component Ms = 0 as the excited state. This state would not give an e.p.r. signal. Such an electronic state could arise either from a ferromagnetic coupling between haem a3+(3)-CN and the cupric ion, Cua3, or form a haem in the Fe(IV) state.  相似文献   

14.
Analytical high-pressure anion-exchange chromatography on RPC-5 has been used to study the behaviour of a good primer, d(pT-T-A-G), and a poor primer, d(pT-T-T-T-T-T) in the E. coli polynucleotide phosphorylase-catalysed reactions of dADP, dCDP, dGDP and dTDP where the primer is extended, predominantly, by one or two nucleotides. The experiments provide some generalizations for obtaining optimal yields in preparative reactions. In the course of the experiments, examples of anomalous behaviour of oligonucleotides on RPC-5 were encountered and these are discussed.  相似文献   

15.
Acetone was found to form a dead-end ternary complex with horse liver alcohol dehydrogenase and oxidized nicotinamide adenine dinucleotide (NAD+) when the reactants were incubated for a long time at relatively high concentrations. The complex formation was demonstrated by measuring the increase in absorbance at 320 nm, the quenching of protein fluorescence, and the loss of enzyme activity. Since acetone is a substrate of liver alcohol dehydrogenase, and the presence of acetaldehyde or pyrazole prevents acetone from forming the dead-end complex with liver alcohol dehydrogenase and NAD+, the acetone molecule in the complex may be bound to the substrate binding site of liver alcohol dehydrogenase. The dissociation of the complex was demonstrated by prolonged dialysis or by addition of reduced nicotinamide adenine dinucleotide (NADH) and iso-butyramide. A modified nicotinamide adenine dinucleotide was obtained as a main product from the dead-end complex after dissociation of the complex or denaturation of the apoenzyme. The modified nicotinamide adenine dinucleotide was found to exhibit an absorption spectrum similar to that of NADH; however, it was not oxidizable by liver alcohol dehydrogenase in the presence of acetaldehyde and exhibited no fluorescence.  相似文献   

16.
2'-Deoxy-2'-azidocytidine-5'-triphosphate was investigated as an inhibitor in two reconstructed enzyme systems which catalyze the replication of two viral DNAs. During replication of the duplex replicative form of phiX174 DNA, DNA polymerase III holoenzyme was weakly inhibited and inhibition was reversed by dCTP. A more pronounced inhibition, not reversed by either dCTP or CTP, was observed during replication of the single-stranded DNA of the bacteriophage G4, a close relative of phiX174. This effect depended on the incorporation of 2'-deoxy-2'-azidocytidine-5'-triphosphate by primase (dnaG protein) which synthesizes a 29-residue RNA primer at the unique origin of bacteriophage G4 DNA replication. Extension of the primer strand, terminated by 2'-deoxy-2'-azidocytidine-5'-triphosphate is then severely inhibited. Primase was also inhibited by the 2'-deoxy-2'-azido derivatives of ATP, GTP, and UTP.  相似文献   

17.
A coupled-enzyme assay for determining viral neuraminidase activity is described. All reactants-viral neuraminidase, the initial substrate (fetuin), N-acetylneuraminic acid aldolase, lactic acid dehydrogenase, and reduced nicotinamide adenine dinucleotide-are combined in a single cuvette. Thus, in a single coupled system neuraminidase releases N-acetylneuraminic acid, which is cleaved to N-acetyl-D-mannosamine and pyruvic acid; finally, pyruvate is reduced to lactate as reduced nicotinamide adenine dinucleotide is oxidized. The rate of change of absorbance at 340 nm, as reduced nicotinamide adenine dinucleotide is oxidized, is a measure of the rate of reaction of the coupled system. This procedure, which measures the rate of release of N-acetylneuraminic acid by neuraminidase, is an alternate method for those procedures which require multistep, colorimetric determinations.  相似文献   

18.
Erythritol catabolism by Brucella abortus.   总被引:2,自引:1,他引:1       下载免费PDF全文
Cell extracts of Brucella abortus (British 19) catabolized erythritol through a series of phosphorylated intermediates to dihydroxyacetonephosphate and CO-2. Cell extracts required adenosine 5'-triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), Mg2+, inorganic orthophosphate, and reduced glutathione for activity. The first reaction in the pathway was the phosphorylation of mesoerythritol with an ATP-dependent kinase which formed d-erythritol 1-phosphate (d-erythro-tetritol 1-phosphate). d-Erythritol 1-phosphate was oxidized by an NAD-dependent dehydrogenase to d-erythrulose 1-phosphate (d-glycero-2-tetrulose 1-phosphate). B. abortus (US-19) was found to lack the succeeding enzyme in the pathway and was used to prepare substrate amounts of d-erythrulose 1-phosphate. d-Erythritol 1-phosphate dehydrogenase (d-erythro-tetritol 1-phosphage: NAD 2-oxidoreductase) is probably membrane bound. d-Erythrulose 1-phosphate was oxidized by an NAD-dependent dehydrogenase to 3-keto-l-erythrose 4-phosphate (l-glycero-3-tetrosulose 4-phosphate) which was further oxidized at C-1 by a membrane-bound dehydrogenase coupled to the electron transport system. Either oxygen or nitrate had to be present as a terminal electron acceptor for the oxidation of 3-keto-l-erythrose 4-phosphate to 3-keto-l-erythronate 4-phosphate (l-glycero-3-tetrulosonic acid 4-phosphate). The beta-keto acid was decarboxylated by a soluble decarboxylase to dihydroxyacetonephosphate and CO-2. Dihydroxyacetonephosphate was converted to pyruvic acid by the final enzymes of glycolysis. The apparent dependence on the electron transport system of erythritol catabolism appears to be unique in Brucella and may play an important role in coupling metabolism to active transport and generation of ATP.  相似文献   

19.
The reaction of cyanide with oxygenated cytochrome c oxidase was followed by means of flow-flash techniques. The oxygenated form, produced after photolysis of the partially reduced CO complex in the presence of cyanide and O2, shows cyanide-binding properties distinct from those of both the oxidized and the reduced forms of the protein. The binding is a single process (k = 22M-1-S-1) linearly dependent on cyanide concentration to as high as 75 mM. It is suggested that the oxygenated form is a conformational variant of the oxidized protein.  相似文献   

20.
A covalently bound adduct of nicotinamide adenine dinucleotide (NAD) with alginic acid has been found to be enzymatically active and to undergo electrochemical oxidation or reduction without significant loss of its enzymatic activity. The preparation of the adduct itself (from NAD+, alginic acid, and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate) is also accomplished with substantially complete retention of enzymatic activity. This adduct has been converted from the oxidized to the reduced form by controlled potential electrolysis using mercury and stainless-steel electrodes. This electrolytically produced NADH complex could be oxidized again to the enzymatically active NAD+ complex by enzymatic reaction with the proton acceptor, 2,6-dichlorophenol indophenol, as catalyzed by diaphorase. Using this electrolytic method with immobilized NAD, it is now possible to carry out redox reactions in which NADH is enzymatically oxidized to NAD+, with the simultaneous electrolytic regeneration of the reduced form, NADH, from the oxidized form, NAD+, produced in the enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号