首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration requires extension of lamellipodia that are stabilized by formation of adhesive complexes at the leading edge. Both processes are regulated by signaling proteins recruited to nascent adhesive sites that lead to activation of Rho GTPases. The Ajuba/Zyxin family of LIM proteins are components of cellular adhesive complexes. We show that cells from Ajuba null mice are inhibited in their migration, without associated abnormality in adhesion to extracellular matrix proteins, cell spreading, or integrin activation. Lamellipodia production, or function, is defective and there is a selective reduction in the level and tyrosine phosphorylation of FAK, p130Cas, Crk, and Dock180 at nascent focal complexes. In response to migratory cues Rac activation is blunted in Ajuba null cells, as detected biochemically and by FRET analysis. Ajuba associates with the focal adhesion-targeting domain of p130Cas, and rescue experiments suggest that Ajuba acts upstream of p130Cas to localize p130Cas to nascent adhesive sites in migrating cells thereby leading to the activation of Rac.  相似文献   

2.
Sequestosome 1/p62 is a scaffolding protein with several interaction modules that include a PB1 dimerization domain, a TRAF6 (tumor necrosis factor receptor-associated factor 6) binding site, and a ubiquitin-associating (UBA) domain. Here, we report that p62 functions to facilitate K63-polyubiquitination of TRAF6 and thereby mediates nerve growth factor-induced activation of the NF-kappaB pathway. In brain of p62 knock-out mice we did not recover polyubiquitinated TRAF6. The UBA domain binds polyubiquitin chains and deletion of p62-UBA domain or mutation of F406V within the ubiquitin binding pocket of the UBA domain abolished TRAF6 polyubiquitination. Likewise, deletion of p62 N-terminal dimerization domain or the TRAF6 binding site had similar effects on both polyubiquitination and oligomerization of TRAF6. Nerve growth factor treatment of PC12 cells induced TRAF6 polyubiquitination along with formation of a p62-TRAF6-IKKbeta-PKC iota signal complex, while inhibition of the p62/TRAF6 interaction had an opposite effect. These results provide evidence for a mechanism whereby p62 serves to regulate the NF-kappaB pathway.  相似文献   

3.
The atypical protein kinase C (aPKC)-interacting protein, p62, has previously been shown to interact with RIP, linking these kinases to NF-kappaB activation by tumor necrosis factor alpha (TNFalpha). The aPKCs have been implicated in the activation of IKKbeta in TNFalpha-stimulated cells and have been shown to be activated in response to interleukin-1 (IL-1). Here we demonstrate that the inhibition of the aPKCs or the down-regulation of p62 severely abrogates NF-kappaB activation by IL-1 and TRAF6, suggesting that both proteins are critical intermediaries in this pathway. Consistent with this we show that p62 selectively interacts with the TRAF domain of TRAF6 but not that of TRAF5 or TRAF2 in co-transfection experiments. The binding of endogenous p62 to TRAF6 is stimulus dependent, reinforcing the notion that this is a physiologically relevant interaction. Furthermore, we demonstrate that the N-terminal domain of TRAF6, which is required for signaling, interacts with zetaPKC in a dimerization-dependent manner. Together, these results indicate that p62 is an important intermediary not only in TNFalpha but also in IL-1 signaling to NF-kappaB through the specific adapters RIP and TRAF6.  相似文献   

4.
The activation of NF-kappaB by receptors in the tumor necrosis factor (TNF) receptor and Toll/interleukin-1 (IL-1) receptor families requires the TRAF family of adaptor proteins. Receptor oligomerization causes the recruitment of TRAFs to the receptor complex, followed by the activation of a kinase cascade that results in the phosphorylation of IkappaB. TANK is a TRAF-binding protein that can inhibit the binding of TRAFs to receptor tails and can also inhibit NF-kappaB activation by these receptors. However, TANK also displays the ability to stimulate TRAF-mediated NF-kappaB activation. In this report, we investigate the mechanism of the stimulatory activity of TANK. We find that TANK interacts with TBK1 (TANK-binding kinase 1), a novel IKK-related kinase that can activate NF-kappaB in a kinase-dependent manner. TBK1, TANK and TRAF2 can form a ternary complex, and complex formation appears to be required for TBK1 activity. Kinase-inactive TBK1 inhibits TANK-mediated NF-kappaB activation but does not block the activation mediated by TNF-alpha, IL-1 or CD40. The TBK1-TANK-TRAF2 signaling complex functions upstream of NIK and the IKK complex and represents an alternative to the receptor signaling complex for TRAF-mediated activation of NF-kappaB.  相似文献   

5.
6.
7.
Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.  相似文献   

8.
9.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

10.
11.
The interleukin-1 (IL-1) receptor-associated kinase (IRAK) is required for the IL-1-induced activation of nuclear factor kappaB and c-Jun N-terminal kinase. The goal of this study was to understand how IRAK activates the intermediate proteins TRAF6, TAK1, TAB1, and TAB2. When IRAK is phosphorylated in response to IL-1, it binds to the membrane where it forms a complex with TRAF6; TRAF6 then dissociates and translocates to the cytosol. The membrane-bound IRAK similarly mediates the IL-1-induced translocation of TAB2 from the membrane to the cytosol. Different regions of IRAK are required for the translocation of TAB2 and TRAF6, suggesting that IRAK mediates the translocation of each protein separately. The translocation of TAB2 and TRAF6 is needed to form a TRAF6-TAK1-TAB1-TAB2 complex in the cytosol and thus activate TAK1. Our results show that IRAK is required for the IL-1-induced phosphorylation of TAK1, TAB1, and TAB2. The phosphorylation of these three proteins correlates strongly with the activation of nuclear factor kappaB but is not necessary to activate c-Jun N-terminal kinase.  相似文献   

12.
We addressed the role of class 1B phosphatidylinositol 3-kinase (PI3K) isoform PI3Kgamma in mediating NADPH oxidase activation and reactive oxidant species (ROS) generation in endothelial cells (ECs) and of PI3Kgamma-mediated oxidant signaling in the mechanism of NF-kappaB activation and intercellular adhesion molecule (ICAM)-1 expression. We used lung microvascular ECs isolated from mice with targeted deletion of the p110gamma catalytic subunit of PI3Kgamma. Tumor necrosis factor (TNF) alpha challenge of wild type ECs caused p110gamma translocation to the plasma membrane and phosphatidylinositol 1,4,5-trisphosphate production coupled to ROS production; however, this response was blocked in p110gamma-/- ECs. ROS production was the result of TNFalpha activation of Ser phosphorylation of NADPH oxidase subunit p47(phox) and its translocation to EC membranes. NADPH oxidase activation failed to occur in p110gamma-/- ECs. Additionally, the TNFalpha-activated NF-kappaB binding to the ICAM-1 promoter, ICAM-1 protein expression, and PMN adhesion to ECs required functional PI3Kgamma. TNFalpha challenge of p110gamma-/- ECs failed to induce phosphorylation of PDK1 and activation of the atypical PKC isoform, PKCzeta. Thus, PI3Kgamma lies upstream of PKCzeta in the endothelium, and its activation is crucial in signaling NADPH oxidase-dependent oxidant production and subsequent NF-kappaB activation and ICAM-1 expression.  相似文献   

13.
14.
We have previously shown that p62/SQSTM1 binds to p38. In this study, we identified two association domains of p62 to p38 by conducting co-immunoprecipitation experiments. One domain comprises the amino acids 173-182, named N-terminal p38 interaction (NPI) domain, and the other domain comprises the amino acids 335-344, named C-terminal p38 interaction (CPI) domain. An aspartic acid tripeptide located at 335-337 was required for their association. However, the direct interaction was only observed between the recombinant p38 and the peptide of the NPI domain, but not that of the CPI domain in the surface plasmon resonance analyses. These results suggest that the CPI domain may serve to form a certain conformation suitable for the association with p38. Furthermore, we showed that knockdown of p62 expression by siRNA led to impaired p38 phosphorylation only when HeLa cells were stimulated by cytokine. The critical role of p62 in cytokine-dependent p38 signalling pathway was further confirmed by measuring IL-8 mRNA. Cytokine mRNA is often stabilized via p38 pathway. In the absence of p62, IL-8 mRNA induced by IL-1beta became more fragile. These data show that p62 specifically regulates cytokine-dependent p38 signalling pathway.  相似文献   

15.
Xiao F  Wang H  Fu X  Li Y  Wu Z 《PloS one》2012,7(4):e34081
p38 mitogen-activated protein kinase (MAPK) is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.  相似文献   

16.
Calcium/calmodulin-dependent protein kinase kinase (CaMKK) and Akt are two multifunctional kinases involved in many cellular responses. Although Akt and Ca(2+) signals have been implicated in NF-kappaB activation in response to certain stimuli, these results are still controversial, and the mechanism(s) involved remains unknown. In this study, we show the roles that CaMKK and Akt play in regulating interleukin-1beta (IL-1beta)-induced NF-kappaB signaling. In human embryonic kidney 293 cells, IL-1beta induces IkappaB kinase beta (IKKbeta) activation, IkappaBalpha degradation, NF-kappaB transactivation, and weak Akt activation. A CaMKK inhibitor (KN-93) and phosphatidylinositol 3-kinase inhibitors (wortmannin and LY294002) do not inhibit IL-1beta-induced NF-kappaB activation. However, IL-1beta-induced NF-kappaB activity is attenuated by increased intracellular calcium in response to ionomycin, UTP, or thapsigargin or by overexpression of CaMKKc and/or Akt. Ionomycin and CaMKKc overexpression increases Akt phosphorylation on Thr(308) and enzyme activity. Under these conditions or upon overexpression of wild type Akt, IL-1beta-induced IKKbeta activity is diminished. Furthermore, a dominant negative mutant of Akt abolishes IKKbeta inhibition by CaMKKc and ionomycin, suggesting that Akt acts as a mediator of CaMKK signaling to inhibit IL-1beta-induced IKK activity at an upstream target site. We have also identified a novel interaction between CaMKK-stimulated Akt and interleukin-1 receptor-associated kinase 1 (IRAK1), which plays a key role in IL-1beta-induced NF-kappaB activation. CaMKKc and Akt overexpression decreases IRAK1-mediated NF-kappaB activity and its association with MyD88 in response to IL-1beta stimulation. Furthermore, CaMKKc and Akt overexpression increases IRAK1 phosphorylation at Thr(100), and point mutation of this site abrogates the inhibitory effect of Akt on IRAK1-mediated NF-kappaB activation. Taken together, these results indicate a novel regulatory mechanism for IL-1beta signaling and suggest that CaMKK-dependent Akt activation inhibits IL-1beta-induced NF-kappaB activation through interference with the coupling of IRAK1 to MyD88.  相似文献   

17.
18.
19.
20.
We previously showed that endothelin-1 (ET-1) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in osteoblast-like MC3T3-E1 cells, and that protein kinase C (PKC)-dependent p44/p42 mitogen-activated protein (MAP) kinase plays a part in the IL-6 synthesis. In the present study, we investigated the effect of (-)-epigallocatechin gallate (EGCG), one of the major flavonoids containing in green tea, on ET-1-induced IL-6 synthesis in osteoblasts and the underlying mechanism. EGCG significantly reduced the synthesis of IL-6 stimulated by ET-1 in MC3T3-E1 cells as well primary cultured mouse osteoblasts. SB203580, a specific inhibitor of p38 MAP kinase, but not SP600125, a specific SAPK/JNK inhibitor, suppressed ET-1-stimulated IL-6 synthesis. ET-1-induced phosphorylation of p38 MAP kinase was not affected by EGCG. On the other hand, EGCG suppressed the phosphorylation of p44/p42 MAP kinase induced by ET-1. Both the IL-6 synthesis and the phosphorylation of p44/p42 MAP kinase stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA), a direct activator of PKC, were markedly suppressed by EGCG. The phosphorylation of MEK1/2 and Raf-1 induced by ET-1 or TPA were also inhibited by EGCG. These results strongly suggest that EGCG inhibits ET-1-stimulated synthesis of IL-6 via suppression of p44/p42 MAP kinase pathway in osteoblasts, and the inhibitory effect is exerted at a point between PKC and Raf-1 in the ET-1 signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号