首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of glucose and glucose-6-phosphate in initiating the repression of beta-galactosidase synthesis were studied using a mutant of Escherichia coli K12 which lacks glucose-specific enzyme II of the phosphoenolpyruvate-sugar phosphotransferase system. It was found that glucose-6-phosphate causes transient repression of beta-galactosidase synthesis but glucose does not cause transient repression in this mutant. Evidence was obtained that both the presence of an active transport system for glucose-6-phosphate in the cells and glucose-6-phosphate in the medium are necessary for the initiation of transient repression. No metabolism of glucose-6-phosphate is required. Upon depletion of glucose-6-phosphate in the medium the transient repression was reversed. After the reversal the rate of enzyme synthesis was high in the cells which had been exposed to a high concentration of glucose-6-phosphate. It was concluded that the translocation of glucose-6-phosphate across the membranes is the primary event which affects both the initiation of and the recovery from the transient repression. During the transient repression the cellular content of cyclic adenosine 3',5'-monophosphate decreased significantly.  相似文献   

2.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

3.
The liver endoplasmic reticulum glucose-6-phosphatase catalytic subunit (G6PC1) catalyses glucose 6-phosphate hydrolysis during gluconeogenesis and glycogenolysis. The highest glucose-6-phosphatase activities are found in the liver and the kidney; there have been many reports of glucose 6-phosphate hydrolysis in other tissues. We cloned a new G6Pase isoform (G6PC3) from human brain encoded by a six-exon gene (chromosome 17q21). G6PC3 protein was able to hydrolyse glucose 6-phosphate in transfected Chinese hamster ovary cells. The optimal pH for glucose 6-phosphate hydrolysis was lower and the K(m) higher relative to G6PC1. G6PC3 preferentially hydrolyzed other substrates including pNPP and 2-deoxy-glucose-6-phosphate compared to the liver enzyme.  相似文献   

4.
Patterns of resistance to 2-deoxy-D-glucose in pig kidney cells   总被引:1,自引:0,他引:1  
Variants resistant to 2-deoxy-D-glucose have been isolated from a clonal line of pig kidney cells by serial cultivation in the presence of inhibitor. Hexokinase activity may be affected directly in this system, since the oxidation of glucose to 6-phosphogluconate by extracts from sensitive and resistant cells is blocked by the addition of 2-deoxy-glucose to the reaction mixture. This blockage was removed by the addition of glucose-6-phosphate to the system, but not by ATP. Resistant cells were found to accumulate significantly less 2-deoxyglucose-6-phosphate than sensitive cells. The rate of phosphorylation of 2-deoxyglucose, however, was higher in extracts from the resistant line. Alkaline phosphatase does not account for the reduced level of 2-deoxyglucose-6-phosphate since this enzyme is not detectable in sensitive or resistant pig kidney cells. Increased acid phosphatase activity was observed in resistant cells, but extracts with high acid phosphatase activity proved incapable of hydrolyzing either 2-deoxyglucose-6-phosphate or glucose-6-phosphate. In comparative growth studies, cells resistant to 2-deoxyglucose proliferated more extensively than sensitive cells in a low glucose nutrient. They removed glucose more effectively from this medium, and were less stimulated by the addition of intermediates from the tricarboxylic acid cycle. The evidence suggests that resistance to 2-deoxyglucose in the cells under study may be based on the ability of the resistant cells to proliferate at concentrations of glucose too low to support the growth of sensitive cells.  相似文献   

5.
The relationships between Ca2+ transport and glucose-6-phosphatase activity, previously studied in isolated liver microsomes, were investigated in permeabilized hepatocytes in the presence of mitochondrial inhibitors. It was found that the addition of glucose 6-phosphate to the cells markedly stimulates the MgATP-dependent Ca2+ uptake. A progressive increase in the stimulation of Ca2+ uptake was seen with increasing amounts of glucose 6-phosphate up to 5 mM concentrations. Vanadate, when added in adequate concentrations (20-40 microM) to the hepatocytes inhibits both the glucose-6-phosphatase activity and the stimulation of Ca2+ uptake by glucose 6-phosphate, while not affecting the MgATP-dependent Ca2+ uptake. The addition of inositol 1,4,5-trisphosphate to permeabilized hepatocytes in which Ca2+ had been accumulated in the presence of MgATP and glucose 6-phosphate, results in a rapid release of Ca2+.  相似文献   

6.
Essential differences are established between the activities in enzymes of monophosphohexoses' transformation in the Zajdela hepatoma and liver of tumour-bearing rats. So, a very low hexokinase activity is observed in the liver, the activity of phosphoglucomutase and glucose-6-phosphate being high. In hepatoma cells the activity of hexokinase is relatively high and that of phosphoglucomutase, glucose-6-phosphate phosphatase and dehydrogenases--glucose-6-phosphate and 6-phosphogluconate inhibiting the activity of phosphoglucomutase is considerably lower. Significant differences are also found in the ratios of the glucose, glucose-6-phosphate, fructose and fructose-6-phosphate concentrations, that evidences for changes in the regulatory mechanisms in the hepatoma cells.  相似文献   

7.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

8.
The constraints in the parameters in models of the spore and stalk cells in Dictyostelium discoideum have been examined. It was found that the relative sizes of the two cellular glucose pools are not very critical, i.e. they can be varied in the models over a fairly wide range and still allow simulations which are compatible with the data. In contrast, the following model parameters are highly constrained, and must fall within narrow limits: flux through the glycogen cycle; the fraction of glycogen present which actually participates in glycogen turnover; the net rate of glycogen degradation; the concentration of exogenous labelled glucose which actually participates in cellular metabolism; the rates of exchange of this exogenous glucose with the two cellular glucose pools; the concentration of the spore glucose-6-phosphate pool, and the rate of exchange of stalk glucose-1-phosphate and stalk glucose-6-phosphate.  相似文献   

9.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

10.
The presence of glucose-6-phosphate markedly stimulated the anaerobic utilization of glyoxylate by either cell-free extracts or partially purified enzyme preparations of coli-aerogenes bacteria. The enzymic reduction of glyoxylate to glycollate was found to occur in the presence of TPN with the following substrates; glucose-6-phosphate, glucose plus ATP, gluconate plus ATP, glucose-1-phosphate or malate. The data indicated that the reduction of glyoxylate to glycollate was coupled to the oxidation of glucose-6-phosphate via the hexose monophosphate shunt pathway. It was propounded that the operation of the hexose monophosphate oxidative pathway might be controlled by TPN-linked glyoxylic reductase, and the mechanisms of enzymic regulation in microbial respiration were also discussed.  相似文献   

11.
Summary To determine the mechanism of the glucose stimulation, glucose or glucose-6-phospate was added to dilute heart extracts in the presence or absence of AMP. The intracellular glucose, tissue glucose-6-phosphate, and tissue AMP concentrations were also determined in 24-h starved animals given glucose; 24-h starved animals given insulin as well as diabetic starved and diabetic starved insulin-treated animals were also studied.The A0.5 for glucose stimulation of cardiac phosphorylase phosphatase activity was approximately 1 .2 mM. The A0.5 for glucose-6-phosphate was approximately 0.02 mM. The glucose-6-phosphate concentration in all animals exceeded the Ao.5 by 10-fold. However, the intracellular glucose concentration in the glucose-treated, insulin-treated, diabetic, and diabetic insulin-treated rats was in the range of the A0.5 for stimulation of phosphorylase phosphatase activity. AMP completely inhibited phosphorylase phosphatase activity at a concentration of 0.2 mM. Physiological concentrations of glucose and glucose-6-phosphate partially reversed this inhibition. Administration of glucose or insulin resulted in an increase in intracellular glucose concentration, an increase in tissue glucose-6-phosphate and a decrease in tissue AMP concentrations. These data suggest that glucose may be a physiological regulator of phosphorylase phosphatase in heart muscle as it is in liver.Recipient ofaMedical InvestigatorshipAward from theVeterans Administration.  相似文献   

12.
A mutant of Saccharomyces cerevisiae deficient in phosphoglucoisomerase (EC 5.3.1.9) is described. It does not grow on glucose or sucrose but does grow on galactose or maltose. Addition of glucose to cultures growing on fructose, mannose, or acetate arrests further growth without altering viability; removal of glucose permits resumption of growth. Glucose causes accumulation of nearly 30 mumoles of glucose-6-phosphate per g (wet weight) of cells and suppresses synthesis of ribonucleic acid. Inhibition of growth by glucose does not appear to be due to a loss of adenosine triphosphate or inorganic orthophosphate. The mutant, however, utilizes glucose-6-phosphate produced intracellularly. Release of carbon dioxide from specifically labeled glucose suggests a C-l preferential cleavage. The kinetics of glucose-6-phosphate accumulation during glucose utilization in the mutant is not consistent with the notion that the utilization of glucose is controlled by glucose-6-phosphate.  相似文献   

13.
Extracts of Pseudomonas aeruginosa (ATCC 7700) cells grown on glucose, gluconate, or glycerol had enzyme activities related to the Entner-Doudoroff pathway. These activities were present in no more than trace amounts when the bacteria were grown on succinate. Fructose-1,6-diphosphate aldolase could not be detected in extracts of the bacteria grown on any of the above carbon sources. Therefore, it appears that P. aeruginosa degrades glucose via an inducible Entner-Doudoroff pathway. The apparent absence of fructose-1,6-diphosphate aldolase in cells growing on succinate suggests that the bacteria can form hexose and pentose phosphates from succinate by an alternate route. d-Glucose-6-phosphate dehydrogenase, a branch-point enzyme of the Entner-Doudoroff pathway, was purified 50-fold from glucose-grown cells. Its molecular weight, estimated by sucrose density gradient centrifugation, was found to be approximately 190,000. The enzyme was strongly inhibited by adenosine triphosphate, guanosine triphosphate, and deoxyguanosine triphosphate, which decreased the apparent binding of glucose-6-phosphate to the enzyme. It is suggested that adenine nucleotide-linked control of glucose-6-phosphate dehydrogenase may regulate the overall catabolism of hexose phosphates and prevent their wasteful degradation under certain conditions requiring gluconeogenesis.  相似文献   

14.
A glucosephosphate isomeraseless mutant ofSaccharomyces cerevisiae was able to accumulate glucose-6-phosphate when incubated with glucose. Transport ofd-xylose was measured in the glucose-6-phosphate charged cells and compared with untreated cells. Even at an intracellular concentration of 15 mM, inhibition of the transport did not surpass 20%. It is concluded that glucose-6-phosphate is not the regulatory metabolite of hexose transport in yeast.  相似文献   

15.
Cell suspensions of Daucus carota L. were grown in batch culture on 50 mM sucrose, 100 mM glucose or 100 mM fructose. Sucrose was rapidly converted extra-cellularly into equimolar amounts of glucose and fructose, and glucose was then taken up preferentially. This impaired uptake of fructose could partially be explained by the eight-fold lower affinity of the hexose carrier in the plasmamembrane for fructose compared to glucose. However, cells grown on fructose as the sole carbon source showed a shorter lag phase and showed more biomass production compared to glucose-grown cells, indicating that conversion of glucose and fructose were also differently regulated. Ninety-five % of the glucose phosphorylating activity was membrane-associated and most probably confined to mitochondria; therefore, it might be present in a respiratory ‘compartment’ making glucose a better substrate for respiration than fructose. The soluble fraction contained the majority of the fructokinase activity. This activity was hypothesized to be more or less randomly distributed through the cytosol; in this soluble ‘compartment’ a pool of fructose-6-phosphate is formed. Concomitantly, via glucose-6-phosphate (G-6-P) and glucose-1-phosphate (G-1-P), it is converted into UDPG-glucose, resulting in structural cell components. The observed transient obstruction of the conversion of G-1-P into UDP-glucose in fructose-grown cells, leading to G-1-P accumulation, might be a result of both an altered equilibrium maintained by phosphoglucomutase, interconverting G-6-P and G-1-P and low levels of nucleotide triphosphates. Low nucleotide triphosphate production, connected with a low initial respiration rate, might be caused by the ten-fold lower affinity of the membrane-associated phosphorylating enzymes for fructose compared to glucose. Our results were taken to indicate that two separate pools of glycolytic intermediates exist in D. carota cells: one distributed throughout the cytosol and one surrounding the mitochondria.  相似文献   

16.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

17.
The circadian changes in the contents of intermediates of the initial reactions of the glycolytic pathway in pigeon liver were studied. the concentrations of glucose, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate and triose phosphates were found to change synchronously, being maximal at the dark time and minimal during the light daytime. The glycogen content in the liver decreased steadily between 12.00 and 09.00. The diurnal variations in the concentrations of metabolite pairs (glucose and glucose-6-phosphate, glucose-6-phosphate and fructose-6-phosphate, fructose-6-phosphate and fructose-1.6-diphosphate, fructose-1.6-diphosphate and triose phosphates) appeared to correlate significantly. The results obtained suggest that in the liver at least there are no limiting i. e. physiologically non-equilibrium reactions in the carbohydrate metabolic pathway from glucose to triose phosphates.  相似文献   

18.
A T Lee  A Cerami 《Mutation research》1991,249(1):125-133
The nonenzymatic glycosylation of nucleic acids in vitro by the reducing sugars, glucose or glucose-6-phosphate, alters both physical and biological properties. Recent investigations have demonstrated that elevated intracellular levels of glucose-6-phosphate in glycolytic mutants of E. coli resulted in a concentration-associated increase in mutations of a target plasmid. The majority of the plasmid mutations were due to large (greater than 1 kb) insertions or deletions. We describe here the further analysis of mutant plasmids isolated from bacteria grown under conditions which were conducive to the intracellular accumulation of glucose-6-phosphate. We have found that a number of the insertional plasmid mutations were the result of the movement of the transposable element gamma delta from the host genome into the plasmid. The frequency of gamma delta transposition was also associated with the amount of glucose-6-phosphate accumulated in the bacterial cells. Furthermore, the presence of another transposable element, either Tn 5 or Tn 10 in the host genome increased the rate of gamma delta transposition without affecting its own movement. The observed increase in gamma delta transposition suggests a novel mechanism of induction by reducing sugars which may be the result of DNA modifications by reducing sugars.  相似文献   

19.
Glucose-6-phosphate dehydrogenase activity has been localized ultrastructurally in fixed tissues. Activity was found in particular in association with ribosomes of granular endoplasmatic reticulum. Biochemical studies indicated that glucose-6-phosphate dehydrogenase activity is also present in the cytoplasm and in peroxisomes. Fixation may be held responsible for selective inactivation of part of glucose-6-phosphate dehydrogenase activity. In the present study, we applied the ferricyanide method for the demonstration of glucose-6-phosphate dehydrogenase activity in unfixed cryostat sections of rat liver in combination with the semipermeable membrane technique and in isolated rat liver parenchymal cells. Isolated liver parenchymal cells were permeabilized with 0.025% glutaraldehyde after NADP+ protection of the active site of glucose-6-phosphate dehydrogenase. This treatment resulted in only slight inactivation of glucose-6-phosphate dehydrogenase activity. The composition of the incubation medium was optimized on the basis of rapid light microscopical analysis of the formation of reddish-brown final reaction product in sections. With the optimized method, electron dense reaction product was observed in cryostat sections on granular endoplasmic reticulum, in mitochondria and at the cell border. However, the ultrastructural morphology was rather poor. In contrast, the morphology of incubated isolated cells was preserved much better. Electron dense precipitate was found on ribosomes of the granular endoplasmic reticulum, in peroxisomes and the cytoplasm, particularly at the periphery of cells. In conclusion, our ultrastructural study clearly demonstrates that it is essential to use mildly-fixed cells to allow detection of glucose-6-phosphate dehydrogenase activity in all cellular compartments where activity is present.  相似文献   

20.
Cell-free extracts of 17 strains of Bifidobacterium bifidum (Lactobacillus bifidus) were examined for the presence of aldolase, glucose-6-phosphate dehydrogenase, and fructose-6-phosphate phosphoketolase. All strains turned out to lack aldolase, an enzyme unique to glycolysis, and glucose-6-phosphate dehydrogenase, characteristic of the hexosemonophosphate pathway. In all strains, fructose-6-phosphate phosphoketolase could be demonstrated. It can be concluded that bifidobacteria ferment glucose via a pathway which is different from those found in members of the genus Lactobacillus. The results strengthen the previous suggestions that classification of the bifidobacteria in the genus Lactobacillus is not justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号