首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
alpha-Factor, a secreted tridecapeptide pheromone, is required for mating between the a- and alpha-haploid mating types of Saccharomyces cerevisiae. An analogue of alpha-factor, [DHP8,DHP11,Nle12] tridecapeptide (where DHP represents 3,4-dehydro-L-proline and Nle represents norleucine), was catalytically reduced in the presence of 3H gas to produce a radiolabeled pheromone with high specific activity, purity, and biological activity. Association and dissociation kinetics indicated values of 4.9 x 10(4) M-1 s-1 for k1 and 1.1 x 10(-3) s-1 for k-1. Saturation binding studies gave an equilibrium dissociation constant equal to 2.3 x 10(-8) M, which approximated the kinetically derived KD of 2.2 x 10(-8) M. These values compare favorably to the previously determined KD of 6 x 10(-9) M (Jenness, D.D., Burkholder, A.C., and Hartwell, L.H. (1986) Mol. Cell. Biol. 6, 318-320). Scatchard analysis and dissociation in the presence of excess unlabeled ligand indicated interaction with a homogeneous population of noninteracting binding sites (13,000 sites/cell). A number of alpha-factor analogues, previously investigated for their structure-function relationships (Naider, F., and Becker, J.M. (1986) CRC Crit. Rev. Biochem. 21, 225-249), were used to compete with [3H]alpha-factor binding. Four tridecapeptides having conservative amino acid replacements bound strongly to the receptor. In contrast, [Phe3]alpha-factor and 10 des-Trp1-alpha-factor analogues bound to the receptor 1-3 orders of magnitude less effectively than did alpha-factor itself. The binding constants for all active pheromones correlated with biological activity. However, des-Trp1[Phe3]alpha-factor and des-Trp1-[Ala3]alpha-factor, which were not biologically active, still competed with alpha-factor binding, indicating that these analogues fail to induce a secondary signal necessary for biological response to the pheromone. One analogue, des-Trp1-[Cha3,L-Ala9]alpha-factor (where Cha represents cyclohexylalanine), was not biologically active and did not demonstrate binding to the receptor, whereas des-Trp1-[Cha3,D-Ala9]alpha-factor was active and bound to the receptor. This finding suggests that a type II beta-turn is necessary for binding of alpha-factor to its receptor and for subsequent biological activity.  相似文献   

2.
Analogues of the des-1-tryptophan,3-beta-cyclohexylalanine-alpha-factor of Saccharomyces cerevisiae, where the glycyl residue of position 9 was replaced by D-Ala, L-Ala, D-Leu, and L-Leu, were synthesized and evaluated by morphogenesis assays and circular dichroism spectroscopy. Synthesis was accomplished in solution phase with mixed anhydrides and p-nitrophenyl active esters as the coupling agents. All crude dodecapeptides were purified to greater than 98% homogeneity by preparative high-performance liquid chromatography on a reversed-phase column. The Gly9, D-Ala9, and D-Leu9 analogues elicited morphogenic alterations in MATa strains of S. cerevisiae at concentrations of 1-2 micrograms/mL and exhibited similar CD patterns in both trifluoroethanol and tris(hydroxymethyl)aminomethane buffer, pH 7.4. In contrast, the L-Ala9 and L-Leu9 analogues were more than 200 times less active in the morphogenesis assay and had markedly different CD spectra. These results demonstrate that the position 9 residue plays an important role in determining the biological activity and solution conformation of alpha-factor. We suggest the presence of a type II beta-turn in the Lys7-Gln10 region when the alpha-factor assumes its biologically active conformation.  相似文献   

3.
Chymases are mast cell serine proteases with chymotrypsin-like primary substrate specificity. Amino acid sequence comparisons of alpha-chymases from different species indicated that certain rodent alpha-chymases have a restricted S1 pocket that could only accommodate small amino acids, i.e. they may, despite being classified as chymases, in fact display elastase-like substrate specificity. To explore this possibility, the alpha-chymase, rat mast cell protease 5 (rMCP-5), was produced as a proenzyme with a His6 purification tag and an enterokinase-susceptible peptide replacing the natural propeptide. After removal of the purification tag/enterokinase site by enterokinase digestion, rMCP-5 bound the serine-protease-specific inhibitor diisopropyl fluorophosphate, showing that rMCP-5 was catalytically active. The primary specificity was investigated with chromogenic substrates of the general sequence succinyl-Ala-Ala-Pro-X-p-nitroanilide, where the X was Ile, Val, Ala, Phe or Leu. The activity was highest toward substrates with Val or Ala in the P1 position, whereas low activity toward the peptide with a P1 Phe was observed, indicating that the substrate specificity of rMCP-5 indeed is elastase-like. The extended substrate specificity was examined utilizing a phage-displayed random nonapeptide library. The preferred cleavage sequence was resolved as P4-(Gly/Pro/Val), P3-(Leu/Val/Glu), P2-(Leu/Val/Thr), P1-(Val/Ala/Ile), P1'-(Xaa), and P2'-(Glu/Leu/Asp). Hence, the extended substrate specificity is similar to human chymase in most positions except for the P1 position. We conclude that the rat alpha-chymase has converted to elastase-like substrate specificity, perhaps associated with an adoption of new biological targets, separate from those of human alpha-chymase.  相似文献   

4.
Using tripeptides of the type Boc-Pro-X-Gly-OEt and Boc-X-Pro-Gly-OEt where X = Val, Leu, Ile, Nle we have studied the influence of the X residue on the stability of folded conformations, most probably the β-turn, in these peptides. In addition, the substitution Gly→β-Ala was also investigated. Our c.d. and i.r. studies show significant changes in β-turn stability depending on the nature and the position of X and on specific solute-solvent interactions.  相似文献   

5.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

6.
7.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

8.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

9.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

10.
The N-terminal 1-34 fragment of parathyroid hormone (PTH) is fully active in vitro and in vivo and reproduces all biological responses characteristic of the native intact PTH. In order to develop safer and non-parenteral PTH-like bone anabolic agents, we have studied the effect of introducing conformationally constrained dipeptide mimetics into the N-terminal portion of PTH in an effort to generate miniaturized PTH-mimetics. To this end, we have synthesized and conformationally and biologically characterized PTH(1-11) analogues containing 3R-carboxy-6S-amino-7,5-bicyclic thiazolidinlactam (7,5-bTL), a rigidified dipeptide mimetic unit. The wild type sequence of PTH(1-11) is H-Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-NH(2). The following pseudo-undecapeptides were prepared: [Ala(1), 7,5-bTL(3, 4), Nle(8), Arg(11)]hPTH(1-11)NH(2) (I); [Ala(1), 7,5-bTL(6, 7), Nle(8), Arg(11)]hPTH(1-11)NH(2) (II); [Ala(1), Nle(8), 7,5-bTL(9, 10), Arg(11)]hPTH(1-11)NH(2) (III). In aqueous solution containing 20% TFE, only analogue I exhibited the typical CD pattern of the alpha-helical conformation. NMR experiments and molecular dynamics calculations located the alpha-helical stretch in the sequence Ile(5)-His(9). The dipeptide mimetic unit 7,5-bTL induces a type III beta-turn, occupying the positions i - 1 and i of the turn. Analogue II exhibited an equilibrium between a type I beta-turn and an alpha-helix, and analogue III did not show any ordered structure. Biological tests revealed poor activity for all analogues (EC(50) > 0.1 mM). Apparently, the relative side-chain orientation of Val(2), Ile(5) and Met(8) can be critical for effective analogue-receptor interaction. Considering helicity as an essential property to obtain active PTH agonists, one must decorate the correctly positioned dipeptide mimetic azabicycloalkane scaffold with substitutions corresponding to the displaced amino acids.  相似文献   

11.
The 10th and 11th residues of parathyroid hormone PTH(1-12) analogues were substituted to study the structure and function of PTH analogues. The substitution of Ala(10) of [Ala(3,10,12)(Leu(7)/Phe(7))Arg(11)]rPTH(1-12)NH(2) with Glu(10) and/or the Arg(11) with Ile(11) markedly decreased cAMP generating activity. Data from circular dichroism (CD) and the nuclear magnetic resonance (NMR) structural analysis of [Ala(3,10,12)(Leu(7)/Phe(7))Arg(11)]rPTH(1-12)NH(2) revealed tight alpha-helical structures, while the Glu(10) and/or Ile(11) substituted analogues showed unstable alpha-helical structures. We conclude that 10th and 11th residues are important for stabilizing its helical conformation and that destabilization of the alpha-helical structure, induced by substituting the above residues, remarkably affect its biological potency.  相似文献   

12.
The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr26 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, Ile, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr26 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.  相似文献   

13.
An analog of alpha-factor, the Saccharomyces cerevisiae tridecapeptide mating pheromone (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr), in which the side chains of Lys7 and Gln10 were covalently linked, was synthesized using solid phase methodologies. The yield of the purified cyclic analog cyclo7,10[Nle12]alpha-factor was 30%, and its structure was verified by amino acid analysis, peptide sequencing, fast atom bombardment-mass spectrometry, and proton nuclear magnetic resonance spectroscopy. Cyclo7,10[Nle12]alpha-factor caused growth arrest and morphological alterations in S. cerevisiae MATa cells qualitatively identical to those induced by linear pheromone and was one-fourth to one-twentieth as active as the linear alpha-factor depending upon the S. cerevisiae strain tested. Consistent with the relative activities of the linear and cyclic peptides, binding competition studies indicated that cyclo7,10[Nle12]alpha-factor had approximately 20-40-fold less affinity for the alpha-factor receptor. Hydrolysis of the cyclic peptide by the target cells did not lead to opening of the ring and was less rapid than that of linear alpha-factor. The alpha-factor antagonist des-Trp1-[Ala3,Nle12]alpha-factor reversed the activity of the cyclic analog, and cyclo7,10[Nle12]alpha-factor was not active at the restrictive temperature in a temperature-sensitive receptor mutant. These results support the conclusion that the cyclic alpha-factor occupies the same binding site within the receptor as is occupied by the natural pheromone. The cyclic alpha-factor represents a rare example of an agonist among covalently constrained congeners of small linear peptide messengers.  相似文献   

14.
The kinetics of the reaction of Boc-Xaa fluorophenyl esters (where Xaa = Ala, Val, Phe, Ser, Leu, Gly, Met, Pro, or Ile) with leucinamide was studied measuring changes in the fluorescence emission at 375 nm of the fluorophenyl chromophore accompanying the reaction. It was found that the experimental kinetic data couldn't be described by a simple scheme of the second order reaction. The measurements of the kinetic parameters of the reaction at various initial concentrations of reagents indicated that the reaction rate can be expressed as: v = kCNaCAEb, where k is the reaction rate constant, CN is the concentration of leucinamide, and LeuNH2, CAE is the concentration of fluorophenyl ester. The a and b reaction orders were close to 1/2 and 3/2 for Xaa = Ala, Val, Phe, Ser, or Leu, 1/2 and 1 for Gly, Met, or Pro, and 1 and 2 for Ile. The experimental equations for the reaction rate can theoretically be derived from a single scheme of chain reactions with various deactivation ways for active intermediates. The English version of the paper.  相似文献   

15.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

16.
Protein transmenembrane (TM) segments participating in helix-helix packing commonly contain small residue patterns (termed GG4 or "small-xxx-small" motifs) at i and i + 4 positions. Within many TM segments - such as the glycophorin A (GpA) sequence L75IxxGVxxGVxxT87- the G17y-xxx-Gly83 motif often occurs in combination with large, usually beta3-branched aliphatic residues at adjacent positions, typified here by Val30 and Val84 residues. To explore the importance of local P-branched character on GpA dimerization, we made systematic replacements to all 16 combinations of single or double Ile, Leu, and AIa residues at GpA TM Val/Val positions 80 and 84. Using the TOXCAT system to assay self-oligomerization in the Escherichia coli inner membrane--we observed that (i) combinations of Val and lie residues maintained, or improved dimerization levels; (ii) single Ala or Leu mutant combinations with Val or Ile maintained near-wild type dimerization affinities; and (iii) in the absence of beta-branching, i.e., Leu/Leu, Ala/Ala and Ala/Leu combinations, GpA dimerization was significantly diminished. An apparent capacity of lle-containing mutants to increase GpA dimerization versus WT likely arises from improved van der Waals packing (vs. Val) within the locus of helix contact, consistent with correlations we noted in lipid accessibility measurements. Examination of several synthetic peptides with sequences corresponding to selected GpA mutants (VV VI, IV II, and LL) confirmed their dimerization on sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The overall results reinforce the importance of a beta-branch-containing "ridge" residue to complement a "small-xxx-small groove" in promotion of TM-TM interactions.  相似文献   

17.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leum-Pro-Glu-Ala-Leun (m=0-4, n=0-3). Neither Pro-Glu-Ala-Leu (m=0) nor Leu-Pro-Glu-Ala (n=0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leum-Pro-Glu-Ala-Leu increased with the increase of m=1 to 2 and 3, but was however, essentially same with the increase of m=3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leun increased with the increase of n=0 to 1 and 2, but was essentially same with the increase of n=2 to 3. Then, it was concluded that cucumisin has a S5-S3′ subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1′ position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1′ positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

18.
An investigation of a series of single replacement analogues of PrRP-(19-31)-peptide has shown that good functional activity was retained when Phe31 was replaced with His(Bzl), Phe(4Cl), Nle, Trp, Cys(Bzl) or Glu(OBzl); when Val28 or Ile25 was replaced with Phg; when Gly24 was replaced with D-Ala, L-Ala, Pro or Sar; when Ser22 was replaced with Gly and when Ala21 was replaced with Thr or MeAla. The results confirm that the functionally important residues are located within the carboxyl terminal segment, -Ile-Arg-Pro-Val-Gly-Arg-Phe-NH2.  相似文献   

19.
The closed conformation of substrate binding loop (SBL) is considered significant for biological activity of direct InhA inhibitors (DIIs). However, exact interactions of SBL with inhibitors are not characterized yet to emphasize over SBL conformations. The seven InhA-DII complexes are analyzed using molecular dynamics simulation to deduce the mechanism for closed and open conformation of SBL. MMGBSA binding energy calculations and decompositions help to identify Ala198, Met199, Ile202, Val203, Ile215, and Leu218 in SBL region as the key residues. The interactions of DIIs with SBL residues particularly Ile202, Val203, Ile215, and Leu218 are found considerable for closed SBL conformation. This difference is accounted for closed state of SBL in 2X23, and open/moderately open state in other complexes. This study substantiates the loop ordering property of DIIs as the basis for high-affinity InhA inhibitors under the molecular recognition phenomena. This property can be used as a parameter to identify potential DIIs using virtual screening approaches.  相似文献   

20.
Models for the structure of the fibers of deoxy sickle cell hemoglobin (Hb Hb S, beta 6 Glu-->Val) have been obtained from X-ray and electron microscopic studies. Recent molecular dynamics calculations of polymer formation give new insights on the various specific interactions between monomers. Site-directed mutagenesis with expression of the Hb S beta subunits in Escherichia coli provides the experimental tools to test these models. For Hb S, the beta 6 Val residue is intimately involved in a specific lateral contact, at the donor site, that interacts with the acceptor site of an adjacent molecule composed predominantly of the hydrophobic residues Phe 85 and Leu 88. Comparing natural and artificial mutants indicates that the solubility of deoxyHb decreases in relation to the surface hydrophobicity of the residue at the beta 6 position with Ile > Val > Ala. We also tested the role of the stereospecific adjustment between the donor and acceptor sites by substituting Trp for Glu at the beta 6 location. Among these hydrophobic substitutions and under our experimental conditions, only Val and Ile were observed to induce polymer formation. The interactions for the Ala mutant are too weak whereas a Trp residue inhibits aggregation through steric hindrance at the acceptor site of the lateral contact. Increasing the hydrophobicity at the axial contact between tetramers of the same strand also contributes to the stability of the double strand. This is demonstrated by associating the beta 23 Val-->Ile mutation at the axial contact with either the beta 6 Glu-->Val or beta 6 Glu-->Ile substitution in the same beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号