首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that agonistic anti-CD40 mAb induced T cell-independent antitumor effects in vivo. In this study, we investigated mechanisms of macrophage activation with anti-CD40 mAb treatment, assessed by the antitumor action of macrophages in vitro. Intraperitoneal injection of anti-CD40 mAb into C57BL/6 mice resulted in activation of peritoneal macrophages capable of suppressing B16 melanoma cell proliferation in vitro, an effect that was greatly enhanced by LPS and observed against several murine and human tumor cell lines. Anti-CD40 mAb also primed macrophages in vitro to mediate cytostatic effects in the presence of LPS. The tumoristatic effect of CD40 ligation-activated macrophages was associated with apoptosis and killing of tumor cells. Activation of macrophages by anti-CD40 mAb required endogenous IFN-gamma because priming of macrophages by anti-CD40 mAb was abrogated in the presence of anti-IFN-gamma mAb, as well as in IFN-gamma-knockout mice. Macrophages obtained either from C57BL/6 mice depleted of T and NK cells by Ab treatment, or from scid/beige mice, were still activated by anti-CD40 mAb to mediate cytostatic activity. These results argued against the role of NK and T cells as the sole source of exogenous IFN-gamma for macrophage activation and suggested that anti-CD40 mAb-activated macrophages could produce IFN-gamma. We confirmed this hypothesis by detecting intracytoplasmic IFN-gamma in macrophages activated with anti-CD40 mAb in vivo or in vitro. IFN-gamma production by macrophages was dependent on IL-12. Taken together, the results show that murine macrophages are activated directly by anti-CD40 mAb to secrete IFN-gamma and mediate tumor cell destruction.  相似文献   

2.
We investigated the effect of CD137 costimulatory blockade in the development of murine acute and chronic graft-vs-host diseases (GVHD). The administration of anti-CD137 ligand (anti-CD137L) mAb at the time of GVHD induction ameliorated the lethality of acute GVHD, but enhanced IgE and anti-dsDNA IgG autoantibody production in chronic GVHD. The anti-CD137L mAb treatment efficiently inhibited donor CD8(+) T cell expansion and IFN-gamma expression by CD8(+) T cells in both GVHD models and CD8(+) T cell-mediated cytotoxicity against host-alloantigen in acute GVHD. However, a clear inhibition of donor CD4(+) T cell expansion and activation has not been observed. On the contrary, in chronic GVHD, the number of CD4(+) T cells producing IL-4 was enhanced by anti-CD137L mAb treatment. This suggests that the reduction of CD8(+) T cells producing IFN-gamma promotes Th2 cell differentiation and may result in exacerbation of chronic GVHD. Our results highlight the effective inactivation of CD8(+) T cells and the lesser effect on CD4(+) T cell inactivation by CD137 blockade. Intervention of the CD137 costimulatory pathway may be beneficial for some selected diseases in which CD8(+) T cells are major effector or pathogenic cells. Otherwise, a combinatorial approach will be required for intervention of CD4(+) T cell function.  相似文献   

3.
TL1A, a recently described TNF-like cytokine that interacts with DR3, costimulates T cells and augments anti-CD3 plus anti-CD28 IFN-gamma production. In the current study we show that TL1A or an agonistic anti-DR3 mAb synergize with IL-12/IL-18 to augment IFN-gamma production in human peripheral blood T cells and NK cells. TL1A also enhanced IFN-gamma production by IL-12/IL-18 stimulated CD56(+) T cells. When expressed as fold change, the synergistic effect of TL1A on cytokine-induced IFN-gamma production was more pronounced on CD4(+) and CD8(+) T cells than on CD56(+) T cells or NK cells. Intracellular cytokine staining showed that TL1A significantly enhanced both the percentage and the mean fluorescence intensity of IFN-gamma-producing T cells in response to IL-12/IL-18. The combination of IL-12 and IL-18 markedly up-regulated DR3 expression in NK cells, whereas it had minimal effect in T cells. Our data suggest that TL1A/DR3 pathway plays an important role in the augmentation of cytokine-induced IFN-gamma production in T cells and that DR3 expression is differentially regulated by IL-12/IL-18 in T cells and NK cells.  相似文献   

4.
Interleukin-18 (IL-18) combined with anti-CD3 monoclonal antibody (mAb) induced interferon-gamma (IFN-gamma) production by T helper type 1 (Th1) cells. Neither IL-18 nor anti-CD3 mAb alone induced production of IFN-gamma. Although treatment with IL-18 alone induced full activation of NF-kappaB in Th1 cells, it was not sufficient for the production of IFN-gamma. To examine the importance of NF-kappaB activation in IFN-gamma production, we established Th1 cells which expressed a transdominant IkappaBalpha mutant. In these cells, activation of NF-kappaB and production of IFN-gamma by IL-18 were suppressed. On the other hand, we examined the T cell receptor (TCR)/CD3-mediated signaling pathway. FK506, an inhibitor of NFAT activation, inhibited IFN-gamma production by IL-18 without any effect on the NF-kappaB activation. We conclude that dual signaling consisting of IL-18-induced NF-kappaB activation and TCR/CD3-mediated NFAT activation is crucial for IFN-gamma production by IL-18 in murine Th1 cells.  相似文献   

5.
IL-21 is a cytokine produced by CD4+ T cells that has been reported to regulate human, as well as, mouse T and NK cell function and to inhibit Ag-induced IgE production by mouse B cells. In the present study, we show that human rIL-21 strongly enhances IgE production by both CD19+ CD27- naive, and CD19+ CD27+ memory B cells, stimulated with anti-CD40 mAb and rIL-4 and that it promotes the proliferative responses of these cells. However, rIL-21 does not significantly affect anti-CD40 mAb and rIL-4-induced Cepsilon promoter activation in a gene reporter assay, nor germline Cepsilon mRNA expression in purified human spleen or peripheral blood B cells. In contrast, rIL-21 inhibits rIL-4-induced IgE production in cultures of PBMC or total splenocytes by an IFN-gamma-dependent mechanism. The presence of a polymorphism (T-83C), in donors heterozygous for this mutation was found to be associated not only with lower rIL-21-induced IFN-gamma production levels, but also with a lower sensitivity to the inhibitory effects of IL-21 on the production of IgE, compared with those in donors expressing the wild-type IL-21R. Taken together, these results show that IL-21 differentially regulates IL-4-induced human IgE production, via its growth- and differentiation-promoting capacities on isotype-, including IgE-, committed B cells, as well as via its ability to induce IFN-gamma production, most likely by T and NK cells, whereas the outcome of these IL-21-mediated effects is dependent on the presence of a polymorphism in the IL-21R.  相似文献   

6.
7.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/-) mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/-) mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.  相似文献   

8.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

9.
NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs.  相似文献   

10.
B cell differentiation depends on cellular interactions with T lymphocytes and monocytes via adhesion molecules (AM). In order to characterize AM which are required for B cell differentiation immunoglobulin production using unseparated peripheral blood mononuclear cells (PBMC) was studied. Unstimulated human PBMC were cultured for 9 days with mAb directed at CD2/CD48, /CD58, CD59, CD5/CD72, CD11a—CD18/CD54, CD28/CD80, CD86, CD40/CD40L, or rat CD2 (control). B cell differentiation was quantified measuring IgM and in some cases IgA, IgG, and IgE production. IgM levels were significantly reduced by mAb against CD40, CD48, CD58 and CD80. The reduction was not due to isotype switching to IgA, IgG or IgE. The role of CD40, CD48, CD58 and CD80 was further investigated after depletion of different cell types. Depletion of monocytes and NK cells resulted in no detectable IgM production irrespective of added mAbs. In contrast, IgM production was still present after depletion of T cells and NK cells. Only mAb against CD80 and CD48 significantly reduced IgM production, the reduction of IgM production by anti-CD40 mAb was less than in the presence of T cells. Importantly, anti-CD58 mAb had no effect on IgM production after T cell and NK cell depletion. Taken together, the AM CD40, CD48, CD58, and CD80 are involved in Ig production of unseparated PBMCs. In this model of B cell differentiation only the AM CD58 depend on the presence of T cells while CD48 and CD80 help was found to be T cell independent.  相似文献   

11.
We examined the expression, the signal transduction capacity and mouse IgG-isotype specificity of CD16 on human gamma delta T cells. CD16 is expressed by the majority of gamma delta T cells in peripheral blood and by part of the gamma delta T cell clones. The amount of CD16 expressed on gamma delta T cell clones varied considerably with passaging of the cells, but was always significantly less than on freshly isolated gamma delta T cells. Like CD16 on CD3- CD16+ natural killer (NK) cells, CD16 on gamma delta T cells can act as an activation site triggering cytotoxic activity. CD16+ gamma delta T cell clones exerted antibody-dependent cellular cytotoxicity (ADCC) which could be blocked by anti-CD16 mAb. ADCC activity of gamma delta T cell clones was also inhibited by anti-CD3 mAb, suggesting a functional linkage between the CD16 and CD3 activation pathways. MAb directed against CD16 induced lysis of Fc gamma R+ target cells by CD16+ gamma delta T cell clones. The mouse IgG-isotype specificity of CD16 on gamma delta T cells was analyzed using isotype switch variants of a murine anti-glycophorin A mAb in EA rosette assays, and was found to be identical to that of CD16 on CD3- CD16+ NK cells, i.e., highest affinity for mIgG2a, intermediate affinity for mIgG2b, and undetectable binding of mIgG1-sensitized erythrocytes. CD16 was partly modulated from the cell surface of both gamma delta T cells and NK cells after rosette formation with mIgG2a-sensitized erythrocytes, indicating that the rosette formation was indeed mediated via the CD16 molecule.  相似文献   

12.
To investigate the immunomodulating effects of IL-15 in vivo on mycobacterial infection, we used IL-15-transgenic (Tg) mice, which were recently constructed with cDNA-encoding secretable isoform of IL-15 precursor protein under the control of a MHC class I promoter. The IL-15-Tg mice exhibited resistance against infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), as assessed by bacteria growth. IFN-gamma level in serum was significantly higher in IL-15-Tg mice than in non-Tg mice after BCG infection. NK cells were remarkably increased, and Ag-specific T cytotoxic 1 response mediated by CD8+ T cells producing IFN-gamma was significantly augmented in the IL-15-Tg mice following BCG infection. Neutralization of endogenous IFN-gamma by in vivo administration of anti-IFN-gamma mAb deteriorated the clearance of the bacteria. Depletion of of NK cells or CD8+ T cells by in vivo administration of anti-asialo-GM(1) Ab or anti-CD8 mAb hampered the exclusion of bacteria. Thus, overexpression of IL-15 in vivo enhanced protection against BCG infection via augmentation of NK and T cytotoxic 1 responses.  相似文献   

13.
The bacterium Burkholderia pseudomallei causes a life-threatening disease called melioidosis. In vivo experiments in mice have identified that a rapid IFN-gamma response is essential for host survival. To identify the cellular sources of IFN-gamma, spleen cells from uninfected mice were stimulated with B. pseudomallei in vitro and assayed by ELISA and flow cytometry. Costaining for intracellular IFN-gamma vs cell surface markers demonstrated that NK cells and, more surprisingly, CD8(+) T cells were the dominant sources of IFN-gamma. IFN-gamma(+) NK cells were detectable after 5 h and IFN-gamma(+) CD8(+) T cells within 15 h after addition of bacteria. IFN-gamma production by both cell populations was inhibited by coincubation with neutralizing mAb to IL-12 or IL-18, while a mAb to TNF had much less effect. Three-color flow cytometry showed that IFN-gamma-producing CD8(+) T cells were of the CD44(high) phenotype. The preferential activation of NK cells and CD8(+) T cells, rather than CD4(+) T cells, was also observed in response to Listeria monocytogenes or a combination of IL-12 and IL-18 both in vitro and in vivo. This rapid mechanism of CD8(+) T cell activation may be an important component of innate immunity to intracellular pathogens.  相似文献   

14.
2B4 (CD244) is a receptor belonging to the CD2-signaling lymphocytic activation molecule family and is found on all murine NK cells and a subset of NKT and CD8+ T cells. Murine 2B4 is expressed as two isoforms (2B4 short and 2B4 long) that arise by alternative splicing. They differ only in their cytoplasmic domains and exhibit opposing function when expressed in the RNK-16 cell line. The ligand for 2B4, CD48, is expressed on all hemopoietic cells. Previous studies have shown that treatment of NK cells with a 2B4 mAb results in increased cytotoxicity and IFN-gamma production. In this report, we used CD48+/- variants of the P815 tumor cell line and 2B4 knockout mice to show that engagement of 2B4 by its counterreceptor, CD48, expressed on target cells leads to an inhibition in NK cytotoxicity. The addition of 2B4 or CD48 mAb relieves this inhibition resulting in enhanced target cell lysis. This 2B4-mediated inhibition acts independently of signaling lymphocytic activation molecule-associated protein expression. Imaging studies show that 2B4 preferentially accumulates at the interface between NK and target cells during nonlytic events also indicative of an inhibitory receptor. This predominant inhibitory function of murine 2B4 correlates with increased 2B4 long isoform level expression over 2B4 short.  相似文献   

15.
CD2 is a differentiation marker present on T cells and NK cells. Cytotoxic T lymphocytes (CTL) can be activated by antibodies directed against the CD3/T-cell receptor complex and CD2 structures; however, the role of CD2 in regulation of CD3- large granular lymphocyte (LGL) functions has only recently been studied. Anti-CD2 monoclonal antibodies (mAbs) may be either augmenting or inhibitory and T-cell activation via the CD2 molecule occurs only when mAb binds defined combinations of the CD2 epitopes. Since LGL can be activated by a single stimulus (e.g., IL-2) to proliferate, produce IFN gamma, and increase their cytolytic potential, these functions were chosen to examine the effects of the anti-CD2 mAb and its combinations. Anti-CD2 mAb (D66, GT2, and X11-1) were incubated with LGL for various times in the absence or presence of IL2 and IFN gamma production was monitored. Single anti-CD2 mAb treatment demonstrated minimal augmentation of IFN gamma production. However, combinations of anti-CD2 (9.6) and the other anti-CD2 mAb resulted in a significant, synergistic enhancement of the IFN gamma production. Anti-CD2 mAb treatment appeared to inhibit production generated by optimal doses of IL-2 (1,000 U/ml). The effect of anti-CD2 mAb on IFN gamma production parallel their effects on LGL NK and LAK activity. These data suggested that mAb against the CD2 molecule were important in regulating LGL functions in the absence of a functional CD3 receptor in LGL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The relationship between the T cell receptor (TcR) for antigen (Ag) and the Lyt-2/3 molecule during T cell activation was studied using the T cell clone KB5.C20, which is dependent upon Lyt-2 for target cell killing. This cytolytic T cell clone can be activated to secrete IFN-gamma by stimulation with H-2Kb expressing cells or with monoclonal antibodies directed against a clonotypic structure of the TcR or against associated CD3 molecules. IFN-gamma production induced by H-2Kb can be inhibited by anti-Lyt-2mAb. In addition, TcR-mediated activation using the anticlonotypic mAb Désiré-1 in soluble form can be inhibited by anti-Lyt-2 mAb in soluble form either as a divalent IgG or as its monovalent Fab fragment. Anti-Lyt-2 mAb immobilized on plastic wells was also inhibitory. Stimulation induced by the anti-TcR mAb or by anti-CD3 mAb immobilized on plastic can be inhibited only with plastic immobilized and not with soluble anti-Lyt-2mAb, however. These results are discussed in terms of local interactions between TcR and Lyt-2 molecules.  相似文献   

18.
Previous studies have shown that the action of bacterial or synthetic oligodeoxynucleotide (oligo-DNA) on mouse NK cells to produce IFN-gamma is mediated mostly by monocytes/macrophages activated by olig-DNA. However, its action on human IFN-gamma-producing cells has not been well investigated. In the present study, we examined the effect of oligo-DNAs on highly purified human NK and T cells. Bacillus Calmette-Guérin-derived or synthetic oligo-DNAs induced NK cells to produce IFN-gamma with an increased CD69 expression, and the autocrine IFN-gamma enhanced their cytotoxicity. The response of NK cells to oligo-DNAs was enhanced when the cells were activated with IL-2, IL-12, or anti-CD16 Ab. T cells did not produce IFN-gamma in response to oligo-DNAs but did respond independently of IL-2 when they were stimulated with anti-CD3 Ab. In the action of oligo-DNAs, the palindrome sequence containing unmethylated 5'-CpG-3' motif(s) appeared to play an important role in the IFN-gamma-producing ability of NK cells. The changes of base composition inside or outside the palindrome sequence altered its activity: The homooligo-G-flanked GACGATCGTC was the most potent IFN-gamma inducer for NK cells. The CG palindrome was also important for activated NK and T cells in their IFN-gamma production, although certain nonpalindromes acted on them. Among the sequences tested, cell activation- or cell lineage-specific sequences were likely; i.e., palindrome ACCGGT and nonpalindrome AACGAT were favored by activated NK cells but not by unactivated NK cells or activated T cells. These results indicate that oligo-DNAs containing CG palindrome act directly on human NK cells and activated T cells to induce IFN-gamma production.  相似文献   

19.
Human and mouse NK cells use different families of receptors to recognize MHC class I (MHC I) on target cells. Although human NK cells express both Ig-like receptors and lectin-like receptors specific for MHC I, all the MHC I-specific receptors identified on mouse NK cells to date are lectin-like receptors, and no Ig-like receptors recognizing MHC I have been identified on mouse NK cells. In this study we report the first MHC I-specific Ig-like receptor on mouse NK cells, namely, murine CD160 (mCD160). The expression of mCD160 is restricted to a subset of NK cells, NK1.1+ T cells, and activated CD8+ T cells. The mCD160-Ig fusion protein binds to rat cell lines transfected with classical and nonclassical mouse MHC I, including CD1d. Furthermore, the level of mCD160 on NK1.1+ T cells is modulated by MHC I of the host. Overexpression of mCD160 in the mouse NK cell line KY-2 inhibits IFN-gamma production induced by phorbol ester plus ionomycin, whereas it enhances IFN-gamma production induced by NK1.1 cross-linking or incubation with dendritic cells. Cross-linking of mCD160 also inhibits anti-NK1.1-mediated stimulation of KY-2 cells. Anti-mCD160 mAb alone has no effect. Thus, mCD160, the first MHC I-specific Ig-like receptor on mouse NK cells, regulates NK cell activation both positively and negatively, depending on the stimulus.  相似文献   

20.
Signaling through CD70 regulates B cell activation and IgG production   总被引:6,自引:0,他引:6  
CD70, the cellular ligand of the TNF receptor family member CD27, is expressed transiently on activated T and B cells and constitutively on a subset of B cell chronic lymphocytic leukemia and large B cell lymphomas. In the present study, we used B cells constitutively expressing CD70 to study the functional consequences of signaling through CD70. In vitro, CD70 ligation with anti-CD70 mAbs strongly supported proliferation and cell cycle entry of B cells submitogenically stimulated with either anti-CD40 mAb, LPS, or IL-4. In this process, the cell surface receptors CD25, CD44, CD69, CD95, and GL7 were up-regulated, whereas the expression of CD21, CD62L, surface IgM (sIgM), and sIgD was decreased. Addition of CD70 mAb to low dose LPS-stimulated CD70-positive B cells strongly diminished IgG secretion and enhanced production of IgM. Signaling through CD70 on B cells was dependent on the initiation of both PI3K and MEK pathways. In vivo exposure to either CD70 mAb or the CD70 counterreceptor CD27 down-regulated CD62L and sIgM on CD70-positive B cells. CD70 signaling during T cell-dependent immune responses also decreased IgG-specific Ab titers. Together, the in vitro and in vivo data demonstrate that CD70 has potent reverse signaling properties in B cells, initiating a signaling cascade that regulates expansion and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号