首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sympathetic nervous system (SNS) plays an important role in the regulation of energy expenditure. However, whether tonic SNS activity contributes to resting metabolic rate (RMR) in healthy adult humans is controversial, with the majority of studies showing no effect. We hypothesized that an intravenous propranolol infusion designed to achieve complete beta-adrenergic blockade would result in a significant acute decrease in RMR in healthy adults. RMR (ventilated hood, indirect calorimetry) was measured in 29 healthy adults (15 males, 14 females) before and during complete beta-adrenergic blockade documented by plasma propranolol concentrations > or =100 ng/ml, lack of heart rate response to isoproterenol, and a plateau in RMR with increased doses of propranolol. Propranolol infusion evoked an acute decrease in RMR (-71 +/- 11 kcal/day; -5 +/- 0.7%, P < 0.0001), whereas RMR was unchanged from baseline levels during a saline control infusion (P > 0.05). The response to propranolol differed from the response to saline control (P < 0.01). The absolute and percent decreases in RMR with propranolol were modestly related to baseline plasma concentration of norepinephrine (r = 0.38, P = 0.05; r = 0.44, P = 0.02, respectively). These findings provide direct evidence for the concept of tonic sympathetic beta-adrenergic support of RMR in healthy nonobese adults.  相似文献   

2.
M L Arndt  D Wu  Y Soong  H H Szeto 《Peptides》1999,20(4):465-470
This study was undertaken to examine the cardiovascular effects of nociceptin/Orphanin FQ (OFQ). Nociceptin/OFQ (10-300 nmol/kg, IV) stimulates an increase in mean blood pressure (MBP) and heart rate (HR) in chronically catheterized sheep. Pretreatment with phenoxybenzamine (5 mg/kg) attenuated the pressor response, consistent with sympathetically mediated vasoconstriction. Furthermore, the lack of a reflex bradycardia suggests either blunting of the baroreflex by nociceptin/OFQ or direct beta-adrenergic activation. The bradycardic response to norepinephrine (0.6 microg/kg, IV) remained intact after nociceptin/OFQ administration, demonstrating that nociceptin/OFQ does not blunt the baroreflex. Additionally, the increase in HR was completely reversed by pretreatment with propranolol. These data suggest that nociceptin/OFQ plays a role in cardiovascular regulation via sympathetic activation.  相似文献   

3.
Adrenergic and cholinergic tone on the cardiovascular system of embryonic chickens was determined during days 12, 15, 19, 20, and 21 of development. Administration of the muscarinic antagonist atropine (1 mg/kg) resulted in no significant change in heart rate or arterial pressure at any developmental age. In addition, the general cardiovascular depressive effects of hypoxia were unaltered by pretreatment with atropine. In addition, the ganglionic blocking agent hexamethonium (25 mg/kg) did not induce changes in heart rate. The beta-adrenergic antagonist propranolol (3 mg/kg) induced a bradycardia of similar magnitude on all days studied, with a transient hypertensive action on days 19-20, indicating the existence of an important cardiac and vascular beta-adrenergic tone. Injections of the alpha-adrenergic antagonists prazosin or phentolamine (1 mg/kg) reduced arterial pressure significantly on all days of incubation studied. Collectively, the data indicate that embryonic chickens rely primarily on adrenergic control of cardiovascular function, with no contribution from the parasympathetic nervous system.  相似文献   

4.
The swivel-tether system has been used extensively in biomedical research involving nonhuman primates, yet there has been little or no investigation into potential adverse influences of this form of restraint on research results. In the study described here, a portable electrocardiographic telemetry system was used for continuous monitoring of the heart rate of 26 cynomolgus monkeys while: (a) pair-caged, 8 weeks prior to tethering; (b) singly-caged, tethered; (c) singly-caged, tethered, administered propranolol (30 mg/kg/day) in the diet; (d) group-housed (five monkeys per group), 1 week after group formation; and (e) group-housed (five monkeys per group), 4 weeks after group formation. Tethering resulted in persistent elevations in heart rate relative to the other conditions. Administration of propranolol, a beta-adrenergic antagonist, resulted in an abrupt, sustained decrease in heart rate indicating that the increase in heart rate associated with tethering was due to persistent stimulation of the sympathetic nervous system. Since multiple aspects of cardiovascular function are influenced by the sympathetic nervous system, and other organs and systems (e.g., pituitary-gonadal) also may be affected, investigators using the swivel-tether system should be cognizant of these potential effects when designing experiments and interpreting the results.  相似文献   

5.
A hypercoagulable state might contribute to increased atherothrombotic risk in hypertension. The sympathetic nervous system is hyperactive in hypertension, and it regulates hemostatic function. We investigated the effect of nonspecific beta-adrenergic stimulation (isoproterenol) and blockade (propranolol) on clotting diathesis in hypertension. Fifteen hypertensive and 21 normotensive subjects underwent isoproterenol infusion in two sequential, fixed-order doses of 20 and then 40 ng. kg(-1). min(-1) for 15 min/dose. Thirteen subjects were double-blind studied after receiving placebo or propranolol (100 mg/day) for 5 days each. In hypertensive subjects, isoproterenol elicited a dose-dependent increase in plasma von Willebrand factor (vWF) antigen [F(2,34) = 5.02; P = 0.032] and a decrease in D-dimer [F(2,34) = 4.57; P = 0.040], whereas soluble tissue factor remained unchanged. Propranolol completely abolished the increase in vWF elicited by isoproterenol [F(1,12) = 10.25; P = 0.008] but had no significant effect on tissue factor and D-dimer. In hypertension, vWF is readily released from endothelial cells by beta-adrenergic stimulation, which might contribute to increased cardiovascular risk. However, beta-adrenergic stimulation alone may not be sufficient to trigger fibrin formation in vivo.  相似文献   

6.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.  相似文献   

7.
To assess the effects of age on responsiveness of atrial natriuretic factor (ANF) release, and the possible contribution of cardiac sympathetic activity, in young (n = 8) and older normotensives (n = 7), the effects of cardiac volume load on plasma ANF, central venous pressure, and general hemodynamics were evaluated. Studies were performed after pretreatment with placebo or 80 mg propranolol. Cardiac volume loading increased central venous pressure by 3-5 mmHg (1 mmHg = 133.3 Pa); beta-blockade did not affect this response. Cardiac volume load caused significant increases in heart rate (10-15 beats/min) and cardiac index (by 0.7-0.8 L.min-1.m-2) and decreases in plasma catecholamines. Propranolol attenuated the increases in heart rate and cardiac index. These hemodynamic responses did not differ significantly between the two groups of subjects. Cardiac volume load significantly increased plasma ANF, by 87 +/- 21 pg/mL in the young normotensives and by 212 +/- 33 pg/mL in the older normotensives (p < 0.01, young vs. older). beta-Blockade did not affect this different response. Our results show that the plasma ANF response to volume loading is potentiated by aging. Although differences in atrial stretch cannot be excluded, this effect may relate to the decrease in clearance of plasma ANF occurring with aging.  相似文献   

8.
Progressive postbirth development of mammalian heart contractile function is accompanied by augmentations of aerobic metabolic potential and cardiac myofibrillar ATPase activity. The temporal similarity of the above developmental sequences suggested that a single, unifying factor may coordinate myocardial maturation. It was hypothesized that cardiac sympathetic nervous system development might be regulating other aspects of myocardial growth. To test this hypothesis, previously well-defined aspects of heart metabolism and contractile protein ATPase activity were determined in rats which were either sympathectomized with 6-hydroxydopamine (6-OHDA) or subjected to chronic, beta-adrenergic blockade (propranolol) throughout the postbirth period from 3 to 6 weeks of age. Neither 6-OHDA treatment nor chronic, beta-adrenergic blockade resulted in a significant reduction of any metabolic enzyme specific activity or in myofibrillar ATPase. Myofibrillar creatine phosphokinase (CPK) activity underwent greater enhancement relative to ATPase during normal heart growth. Significant and divergent influences were exerted by 6-OHDA and propranolol drug regimens on myofibrillar CPK/ATPase enzyme activity ratio. These results indicate (a) the potential for independent regulation of myofibrillar CPK and ATPase, and (b) the advisability of evaluating CPK, ATPase, and CPK/ATPase enzymatic activities as myofibrillar correlates of heart contractile function. Nevertheless, the majority of developmentally related processes in the heart are minimally influenced by chemical sympathectomy.  相似文献   

9.
Interaction of propranolol with central serotonergic neurons   总被引:1,自引:0,他引:1  
L F Jones  R L Tackett 《Life sciences》1988,43(26):2249-2255
Central monoaminergic mechanisms are believed to be involved in cardiovascular regulation. The present study was designed to evaluate the involvement of central serotonergic pathways in the antihypertensive action of propranolol in pentobarbital anesthetized mongrel dogs. Ventriculocisternal perfusion of propranolol (25 ug/kg/min for 30 min) decreased serotonin turnover as indicated by a significant decrease in cerebrospinal fluid levels of 5-hydroxyindoleacetic acid (5-HIAA). This effect was accompanied by a significant reduction in mean arterial pressure and heart rate. These results indicate that propranolol decreases central serotonergic activity and suggests a possible role for central serotonergic pathways in the antihypertensive action of propranolol. Several studies have indicated that central serotonergic pathways participate in the regulation of blood pressure. Brainstem regions including the nucleus tractus solitarius, the raphe nucleus and the anterior hypothalamic preoptic region are involved in cardiovascular control and contain a dense population of serotonergic neurons. A centrally-mediated hypotensive effect of propranolol has been demonstrated. Centrally administered propranolol increases cerebrospinal fluid (CSF) levels of norepinephrine and reduces blood pressure possibly due to decreased peripheral sympathetic nerve activity. Central serotonergic pathways may also be involved in the antihypertensive action of some beta-adrenoceptor antagonists. Destruction of central serotonergic neurons with 5,7-dihydroxytryptamine and desipramine abolished the antihypertensive effect of intracisternal propranolol in sinoaortic denervated dogs. Acute administrations of (-)-propranolol and (-)-pindolol decreased the synthesis rate of serotonin, while acute administration of salbutamol, a beta 2-adrenoceptor agonist, increased 5-HIAA levels in rat brain structures. The present study was designed to evaluate the involvement of central serotonergic pathways in the antihypertensive action of propranolol.  相似文献   

10.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

11.
The sympathetic stimulation under slow pilocarpine-induced flow conditions brought about a decrease in this flow rate that could be due to vasoconstriction, since such an effect was not observed after the administration of phentolamine (4 mg/kg i.v.). Contrariwise the injection of a beta-adrenergic blocking agent (propranolol 2-2.5 mg/kg i.v.) produced a decrease of the salivary flow rate that was even greater than in the control animals. These results suggest that the secretory effect in this gland and species is predominantly beta-adrenergic. The stated results are related to the changes observed in the blood outflow from the gland.  相似文献   

12.
Adult aging in humans is associated with marked and sustained increases in sympathetic nervous system (SNS) activity to several peripheral tissues, including the heart, the gut-liver circulation, and skeletal muscle. This chronic activation of the peripheral SNS likely is, at least in part, a primary response of the central nervous system to stimulate thermogenesis to prevent further fat storage in the face of increasing adiposity with aging. However, as has been proposed in obesity hypertension, this tonic activation of the peripheral SNS has a number of adverse secondary cardiovascular consequences. These include chronic reductions in leg blood flow and vascular conductance, increased tonic support of arterial blood pressure, reduced limb and systemic alpha-adrenergic vasoconstrictor responsiveness, impaired baroreflex buffering, large conduit artery hypertrophy, and decreased vascular and cardiac responsiveness to beta-adrenergic stimulation. These effects of chronic age-associated SNS activation on the structure and function of the cardiovascular system, in turn, may have important implications for the maintenance of physiological function and homeostasis, as well as the risk of developing clinical cardiovascular and metabolic diseases in middle-aged and older adults.  相似文献   

13.
The plasma propranolol levels associated with the abolition of chronic, stable ventricular ectopic beats have been studied. Racemic propranolol (DL) suppressed the ectopic foci at plasma levels of 40-85 ng/ml in eight patients, but levels of 70-200 ng/ml were unsuccessful in four patients. Dextro-(D) propranolol levels of 180-310 ng/ml were ineffective in four patients who had previously responded at levels of 60-75 ng/ml of racemic propranolol. The significance of the sympathetic nervous system in the genesis of ectopic beats is discussed. It is concluded that propranolol is clinically effective by virtue of its beta-adrenergic blocking activity.  相似文献   

14.
Decreased maximal O2 uptake (VO2max) and stimulation of the sympathetic nervous system have been previously shown to occur at high altitude. We hypothesized that tachycardia mediated by beta-adrenergic stimulation acted to defend VO2max at high altitude. Propranolol treatment beginning before high-altitude (4,300 m) ascent reduced heart rate during maximal and submaximal exercise in six healthy men treated with propranolol (80 mg three times daily) compared with five healthy subjects receiving placebo (lactose). Compared with sea-level values, the VO2max fell on day 2 at high altitude, but the magnitude of fall was similar in the placebo and propranolol treatment groups (26 +/- 6 vs. 32 +/- 5%, P = NS) and VO2max remained similar at high altitude in both groups once treatment was discontinued. During 30 min of submaximal (80% of VO2max) exercise, propranolol-treated subjects maintained O2 uptake levels that were as large as those in placebo subjects. The maintenance of maximal or submaximal levels of O2 uptake in propranolol-treated subjects at 4,300 m could not be attributed to increased minute ventilation, arterial O2 saturation, or hemoglobin concentration. Rather, it appeared that propranolol-treated subjects maintained O2 uptake by transporting a greater proportion of the O2 uptake with each heartbeat. Thus, contrary to our hypothesis, beta-adrenergic blockade did not impair maximal or submaximal O2 uptake at high altitude due perhaps to compensatory mechanisms acting to maintain stroke volume and cardiac output.  相似文献   

15.
Thermoregulation and cardiovascular drift were studied under conditions of prolonged exercise in a warm environment (dry bulb temperature 31.7 +/- 0.3 degrees C, rh 44.7 +/- 4.7%) during beta-adrenergic blockade. Fourteen subjects performed 90-min rides on a cycle ergometer at a work rate equivalent to 40% of their control maximal O2 uptake under each of three treatments provided in a randomized double-blind manner: atenolol (100 mg/day), propranolol (160 mg/day), and a placebo. Exercise during the propranolol trial resulted in significantly higher forearm vascular resistance values and significantly lower forearm blood flows (FBF) compared with the placebo trial. However, the significantly lower FBF during propranolol did not significantly alter the rectal temperature (Tre) response to prolonged exercise. In addition, both beta-blockers produced lower FBF for any given Tre, suggesting that beta-adrenergic blockade affects FBF through nonthermal factors. The slight differences in Tre, despite the large differences in FBF between the various treatments, are apparently the result of an enhanced sweat loss and a lower mean skin temperature during exercise with beta-blockade. The uncoupling of FBF and sweat loss provides evidence of independent regulation. The reduction in FBF at any given Tre was concomitant to lower blood pressure values during beta-blockade and suggests that baroreflexes provide significant input to the control of skin blood flow when both pressure and temperature maintenance are simultaneously challenged.  相似文献   

16.
20 normal healthy subjects in a double-blind crossover experiment were given a table of either 40 mg propranolol or placebo half an hour before the beginning of the experiment. At rest and during the performance of a task, hert rate, Achilles tendon (T) and Hoffmann (H) reflexes were recorded. No increase in heart rate occurred during the task in the propranolol session. The increase of T-reflex amplitude, a common finding during the task under consideration, was larger in the propranolol session. No difference with H reflexes was found. It is concluded that the increase of T-reflex amplitudes during the task is caused only by fusimotor and not by sympathetic activity. It is speculated that if the sympathetic system plays a role at all, the effect on the T reflex is depressive rather than facilitating.  相似文献   

17.
To assess the role of beta-adrenergic stimulation in cardiovascular conditioning we examined the effects of a beta-adrenergic blocker, propranolol, in mongrel dogs during an 8-wk treadmill-training program. Seven dogs were trained without a drug (NP), six were trained on propranolol 10 mg.kg-1.day-1 (P), and five served as caged controls (C). Effective beta-adrenergic blockade was documented by a decrease in peak exercise heart rate of 54 +/- 11 (SE) beats/min (P less than 0.05) and a one-log magnitude of increase in the isoproterenol-heart rate dose-response curve. Testing was performed before drug treatment or training and again after training without the drug for 5 days. Submaximal exercise heart rate decreased similarly in both NP and P (-26 +/- 4 NP vs. -25 +/- 9 beats/min P, P less than 0.05 for both) but peak heart rate decreased only with NP (-33 +/- 9 beats/min, P less than 0.05). Treadmill exercise time increased similarly in both groups: 3.4 +/- 0.6 min in NP and 3.0 +/- 0.2 min in P (both P less than 0.05). Blood volume also increased after training in both groups: 605 +/- 250 ml (26%) in NP and 377 +/- 140 ml (17%) in P (both P less than 0.05). Submaximal exercise arterial lactates were reduced similarly in both groups but peak exercise lactate was reduced more in NP (-1.4 +/- 0.3 NP vs -0.3 +/- 0.12 mmol/l P, P less than 0.05). Lactate threshold increased in both groups but the increase was greater in NP (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study investigated the contribution of beta-adrenergic stimulation to the increase in resting metabolic rate (RMR) and lipid oxidation observed in exercise-trained individuals. Nine trained and eight sedentary men were subjected to two testing sessions, during which these variables were measured before and for 3 h after the oral administration of propranolol or placebo. As expected, RMR and lipid oxidation were significantly higher in the trained subjects before the administration of propranolol and throughout the placebo test in comparison with sedentary controls. A significant decrease in RMR and lipid oxidation was induced by propranolol in the trained subjects, whereas no change was observed in the untrained group, and this effect of propranolol was sufficient to abolish the difference between the two groups at baseline and under the placebo condition. Propranolol also induced a significant reduction in heart rate and systolic blood pressure, but the response was comparable in the two groups. In conclusion, the results of this study show that beta-adrenergic stimulation is involved in the increase in RMR and lipid oxidation observed in highly trained individuals. Moreover, the absence of a training-propranolol interaction effect on heart rate and systolic blood pressure suggests the existence of some dissociation between the metabolic and cardiovascular effects of prolonged exercise training.  相似文献   

19.
Hood SG  Watson AM  May CN 《Peptides》2005,26(7):1248-1256
Urotensin II (UII) is a highly conserved peptide that has potent cardiovascular actions following central and systemic administration. To determine whether the cardiovascular actions of UII are mediated via beta-adrenoceptors, we examined the effect of intravenous (IV) propranolol on the responses to intracerebroventricular (ICV) and IV administration of UII in conscious sheep. Sheep were surgically instrumented with ICV guide tubes and flow probes or cardiac sympathetic nerve recording electrodes. ICV UII (0.2 nmol/kg over 1 h) caused prolonged increases in heart rate (HR; 33 +/- 11 beats/min; P < 0.01), dF/dt (581 +/- 83 L/min/s; P < 0.001) and cardiac output (2.3 +/- 0.4 L/min; P < 0.001), accompanied by increases in coronary (19.8 +/- 5.4 mL/min; P < 0.01), mesenteric (211 +/- 50 mL/min; P < 0.05) and iliac (162 +/- 31 mL/min; P < 0.001) blood flows and plasma glucose (7.0 +/- 2.6 mmol/L; P < 0.05). Propranolol (30 mg bolus followed by 0.5 mg/kg/h IV) prevented the cardiac responses to ICV UII and inhibited the mesenteric vasodilatation. At 2 h after ICV UII, when HR and mean arterial pressure (MAP) were increased, cardiac sympathetic nerve activity (CSNA) was unchanged and the relation between CSNA and diastolic pressure was shifted to the right (P < 0.05). The hyperglycemia following ICV UII was abolished by ganglion blockade but not propranolol. IV UII (20 nmol/kg) caused a transient increase in HR and fall in stroke volume; these effects were not blocked by propranolol. These results demonstrate that the cardiac actions of central UII depend on beta-adrenoreceptor stimulation, secondary to increased CSNA and epinephrine release, whereas the cardiac actions of systemic UII are not mediated by beta-adrenoreceptors and probably depend on a direct action of UII on the heart.  相似文献   

20.
In normotensive rats the effect of different doses of propranolol (1.0, 5.0 and 10.0 mg/kg i.p.) and ketanserin (10.0 mg/kg p.o.) on mean blood pressure and heart rate and on cardiovascular response to noradrenaline (0.1, 0.3, 0.5, 0.7 and 1.0 micrograms/kg i.v.) was examined. The drugs were given separately or together. Propranolol slightly reduced the hypotensive effect of ketanserin. On the other hand a decrease in heart rate caused by propranolol was not affected by ketanserin. Our results show that propranolol given with ketanserin did not change the effect of the latter on the cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号