首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.  相似文献   

2.
A prototypic study of the molecular mechanisms of activation or inactivation of peptide hormone G protein-coupled receptors was carried out on the human B2 bradykinin receptor. A detailed pharmacological analysis of receptor mutants possessing either increased constitutive activity or impaired activation or ligand recognition allowed us to propose key residues participating in intramolecular interaction networks stabilizing receptor inactive or active conformations: Asn(113) and Tyr(115) (TM III), Trp(256) and Phe(259) (TM VI), Tyr(295) (TM VII) which are homologous of the rhodopsin residues Gly(120), Glu(122), Trp(265), Tyr(268), and Lys(296), respectively. An essential experimental finding was the spatial proximity between Asn(113), which is the cornerstone of inactive conformations, and Trp(256) which plays a subtle role in controlling the balance between active and inactive conformations. Molecular modeling and mutagenesis data showed that Trp(256) and Tyr(295) constitute, together with Gln(288), receptor contact points with original nonpeptidic ligands. It provided an explanation for the ligand inverse agonist behavior on the WT receptor, with underlying restricted motions of TMs III, VI, and VII, and its agonist behavior on the Ala(113) and Phe(256) constitutively activated mutants. These data on the B2 receptor emphasize that conformational equilibria are controlled in a coordinated fashion by key residues which are located at strategic positions for several G protein-coupled receptors. They are discussed in comparison with the recently determined rhodopsin crystallographic structure.  相似文献   

3.
Lee C  Hwang SA  Jang SH  Chung HS  Bhat MB  Karnik SS 《FEBS letters》2007,581(13):2517-2522
The angiotensin II type I (AT(1)) receptor mediates regulation of blood pressure and water-electrolyte balance by Ang II. Substitution of Gly for Asn(111) of the AT(1) receptor constitutively activates the receptor leading to Gq-coupled IP(3) production independent of Ang II binding. The Ang II-activated conformation of the AT1(N111G) receptor was proposed to be similar to that of the wild-type AT(1) receptor, although, various aspects of the Ang II-induced conformation of this constitutively active mutant receptor have not been systematically studied. Here, we provide evidence that the conformation of the active state of the wild-type and the constitutively active AT(1) receptors are different. Upon Ang II binding an activated conformation of the wild-type AT(1) receptor activates G protein and recruits beta-arrestin. In contrast, the agonist-bound AT1(N111G) mutant receptor preferentially couples to Gq and is inadequate in beta-arrestin recruitment.  相似文献   

4.
Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.  相似文献   

5.
Kumar V  Knowle D  Gavini N  Pulakat L 《FEBS letters》2002,532(3):379-386
Increase in the intracellular inositol triphosphate (IP3) levels in Xenopus oocytes in response to expression and activation of rat angiotensin II (Ang II) receptor AT1 was inhibited by co-expression of rat AT2 receptor. To identify which region of the AT2 was involved in this inhibition, ability of three AT2 mutants to abolish this inhibition was analyzed. Deletion of the C-terminus of the AT2 did not abolish this inhibition. Replacing Ile249 in the third intracellular loop (3rd ICL) of the AT2 with proline, corresponding amino acid in the AT1, in the mutant M6, resulted in slightly reduced affinity to [125I]Ang II (K(d)=0.259 nM), however, did not abolish the inhibition. In contrast, replacing eight more amino acids in the 3rd ICL of the AT2 (at positions 241-244, 250-251 and 255-256) with that of the AT1 in the mutant M8, not only increased the affinity of the AT2 receptor to [125I]Ang II (K(d)=0.038 nM) but also abolished AT2-mediated inhibition. Interestingly, activation of the M8 by Ang II binding also resulted in increase in the intracellular IP(3) levels in oocytes. These results imply that the region of the 3rd ICL of AT2 spanning amino acids 241-256 is sufficient for the AT2-mediated inhibition of AT1-stimulated IP3 generation. Moreover, these nine mutations are also sufficient to render the AT2 with the ability to activate phospholipase C.  相似文献   

6.
The present study investigates the importance of the amino acid side chains in the octapeptide angiotensin II (Ang II) for binding to the AT2 receptor. A Gly scan was performed where each amino acid in Ang II was substituted one-by-one with glycine. The resulting set of peptides was tested for affinity to the AT2 receptor (porcine myometrial membranes). For a comparison, the peptides were also tested for affinity to the AT1 receptor (rat liver membranes). Only the substitution of Arg2 reduced affinity to the AT2 receptor considerably (92-fold when compared with Ang II). For the other Gly-substituted analogues the affinity to the AT2 receptor was only moderately affected. To further investigate the role of the Arg2 side chain for receptor binding, we synthesized some N-terminally modified Ang II analogues. According to these studies a positive charge in the N-terminal end of angiotensin III [Ang II (2-8)] is not required for high AT2 receptor affinity but seems to be more important in Ang II. With respect to the AT1 receptor, [Gly2]Ang II and [Gly8]Ang II lacked binding affinity (Ki > 10 microM). Replacement of the Val3 or Ile5 residues with Gly produced only a slight decrease in affinity. Interestingly, substitution of Tyr4 or His6, which are known to be very important for AT1 receptor binding, resulted in only 48 and 14 times reduction in affinity, respectively.  相似文献   

7.
Angiotensin II receptor subtypes AT1 and AT2 are proteins with seven transmembrane domain (TMD) topology and share 34% homology. It was shown that His256, located in the sixth TMD of the AT1 receptor, is needed for the agonist activation by the Phe8 side chain of angiotensin II, although replacing this residue with arginine or glutamine did not significantly alter the affinity binding of the receptor. We hypothesized that the His273 located in the sixth transmembrane domain of the AT2 receptor may play a similar role in the functions of the AT2 receptor, although this residue was not identified as a conserved residue in the initial homology comparisions. Therefore, we replaced His273 of the AT2 receptor with arginine or glutamine and analyzed the ligand-binding properties of the mutant receptors using Xenopus oocytes as an expression system. Our results suggested that the AT2 receptor mutants His273Arg and His273 Glu have lost their affinity to [125I-Sar1-Ile8]Ang II, a peptidic ligand that binds both the AT1 and AT2 receptors and to 125I-CGP42112A, a peptidic ligand that binds specifically to the AT2 receptor. Thus, His273 located in the sixth TMD of the AT2 receptor seems to play an important role in determining the binding properties of this receptor. Moreover, these results along with our previous observation that the Lys215 located in the 5th TMD of the AT2 receptor is essential for its high affinity binding to [125I-Sar1-Ile8]Ang II indicate that key amino acids located in the 5th and 6th TMDs of the AT2 receptor are needed for high affinity binding of the AT2 to its ligands.  相似文献   

8.
Coetsee M  Millar RP  Flanagan CA  Lu ZL 《Biochemistry》2008,47(39):10305-10313
Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch.  相似文献   

9.
Recent studies of beta(2)-adrenergic receptor suggest that agonist-promoted receptor internalization may play an important role in extracellular signal-regulated kinase (ERK) activation by G protein-coupled receptors. In the present study, we explored the effects of angiotensin II (Ang II) type-1 receptor (AT(1)) internalization on Ang II-induced activation of ERK using the receptor internalization blocker concanavalin A (ConA) and the carboxyl terminus-truncated receptor mutants with impaired internalization. ConA inhibited AT(1) receptor internalization without affecting ligand binding to the receptor, Ang II-induced generation of second messengers, and activation of tyrosine kinases Src and Pyk2 in vascular smooth muscle cells (VSMC). ConA blocked ERK activation evoked by Ang II and the calcium ionophore A23187. Impairment of AT(1) receptor internalization by truncating the receptor carboxyl terminus did not affect Ang II-induced ERK activation. ConA induced proteolytic cleavage of the epidermal growth factor (EGF) receptor at carboxyl terminus and abolished Ang II-induced transactivation of the EGF receptor, which is critical for ERK activation by Ang II in VSMC. ConA also induced proteolysis of erbB-2 but not platelet-derived growth factor receptor. Thus, ConA blocks Ang II-induced ERK activation in VSMC through a distinct mechanism, the ConA-mediated proteolysis of the EGF receptor.  相似文献   

10.
Human alpha-chymase is an efficient angiotensin (AT) converting enzyme, selectively hydrolyzing AT I at Phe8 to generate bioactive AT II, which can promote cardiac hypertrophy, vascular stenosis, and hypertension. Some related enzymes, such as rat beta-chymase 1, are much less selective, destroying AT by cleaving at Tyr4. Comparisons of chymase structure and activity led to speculation that interaction between AT and the side chain of Lys40 or Arg143 accounts for the human enzyme's marked preference for Phe8 over Tyr4. To test these hypotheses, we compared AT hydrolysis by wild-type chymase with that by mutants changing Lys40 or Arg143 to neutral residues. Lys40 was exchanged for alanine, the residue found in canine alpha- and rat beta-chymase 1, the latter being dramatically less selective for hydrolysis at Phe8. Arg143 was exchanged for glutamine found in rat beta-chymase 1. The Lys40Ala mutant is a dog-like enzyme retaining strong preference for Phe8 but with Tyr4 hydrolytic rates enhanced 16-fold compared to wild-type human enzyme. Thus, of 40 residues mismatched between dog and human enzymes, a single residue accounts for most of the difference in specificity between them. The Arg143Gln mutant, contrary to prediction, remains highly Phe8-selective. Therefore, Lys40, but not Arg143, contributes to human chymase's remarkable preference for AT II generation over destruction.  相似文献   

11.
Although tyrosine kinases are critically involved in the angiotensin II (Ang II) type 1 (AT1) receptor signaling, how AT1 receptors activate tyrosine kinases is not fully understood. We examined the structural requirements of the AT1 receptor for transactivation of the epidermal growth factor (EGF) receptor (EGFR). Studies using carboxyl terminal-truncated AT1 receptors indicated that the amino acid sequence between 312 and 337 is required for activation of EGFR. The role of the conserved YIPP motif in this sequence in transactivation of EGFR was investigated by mutating tyrosine 319. Ang II failed to activate EGFR in cells expressing AT1-Y319F, whereas EGFR was activated even without Ang II in cells expressing AT1-Y319E, which mimics the AT1 receptor phosphorylated at Tyr-319. Immunoblot analyses using anti-phospho Tyr-319-specific antibody showed that Ang II increased phosphorylation of Tyr-319. EGFR interacted with the AT1 receptor but not with AT1-Y319F in response to Ang II stimulation, whereas the EGFR-AT1 receptor interaction was inhibited in the presence of dominant negative SHP-2. The requirement of Tyr-319 seems specific for EGFR because Ang II-induced activation of other tyrosine kinases, including Src and JAK2, was preserved in cells expressing AT1-Y319F. Extracellular signal-regulated kinase activation was also maintained in AT1-Y319F through activation of Src. Overexpression of wild type AT1 receptor in cardiac fibroblasts enhanced Ang II-induced proliferation. By contrast, overexpression of AT1-Y319F failed to enhance cell proliferation. In summary, Tyr-319 of the AT1 receptor is phosphorylated in response to Ang II and plays a key role in mediating Ang II-induced transactivation of EGFR and cell proliferation, possibly through its interaction with SHP-2 and EGFR.  相似文献   

12.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

13.
The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr26 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, Ile, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr26 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.  相似文献   

14.
Extracellular signal-regulated kinase 5 (ERK5), a recently discovered mitogen-activated protein kinase (MAPK), plays a key role in the development and pathogenesis of cardiovascular disease. In order to clarify the pathophysiological significance of ERK5 in vascular remodeling, we investigated ERK5 phosphorylation in hypertrophy of human aortic smooth muscle cells (HASMCs) induced by angiotensin II (Ang II). The AT1 receptor was involved in Ang II-induced ERK5 activity. Hypertrophy was detected by the measurement of protein synthesis with [3H]-Leu incorporation in cultured HASMCs. Ang II rapidly induced phosphorylation of ERK5 at Thr218/Tyr220 residues in a time- and dose-dependent manner. Activation of myocyte enhancer factor-2C (MEF2C) by ERK5 was inhibited by PD98059. Transfecting HASMCs with small interfering RNA (siRNA) to silence ERK5 inhibited Ang II-induced cell hypertrophy. Thus, ERK5 phosphorylation contributes to MEF2C activation and subsequent HASMC hypertrophy induced by Ang II, for a novel molecular mechanism in cardiovascular diseases induced by Ang II.  相似文献   

15.
The human angiotensin II type 1 receptor (hAT(1)) was photolabeled with a high-affinity radiolabeled photoreactive analogue of AngII, (125)I-[Sar(1), Val(5), p-Benzoyl-L-phenylalanine(8)]AngII ((125)I-[Sar(1),Bpa(8)]AngII). Chemical cleavage with CNBr produced a 7 kDa fragment (285-334) of the C-terminal portion of the hAT(1). Manual Edman radiosequencing of photolabeled, per-acetylated, and CNBr-fragmented receptor showed that ligand incorporation occurred through Phe(293) and Asn(294) within the seventh transmembrane domain of the hAT(1). Receptor mutants with Met introduced at the presumed contact residues, F293M and N294M, were photolabeled and then digested with CNBr. SDS-PAGE analysis of those digested mutant receptors confirmed the contact positions 293 and 294 through ligand release induced by CNBr digestion. Additional receptor mutants with Met residues introduced into the N- and C-terminal proximity of those residues 293 and 294 of the hAT(1) produced, upon photolabeling and CNBr digestion, fragmentation patterns compatible only with the above contact residues. These data indicate that the C-terminal residue of AngII interacts with residues 293 and 294 of the seventh transmembrane domain of the human AT(1) receptor. Taking into account a second receptor-ligand contact at the second extracellular loop and residue 3 of AngII (Boucard, A. A., Wilkes, B. C., Laporte, S. A., Escher, E., Guillemette, G., and Leduc, R. (2000) Biochemistry 39, 9662-70) the Ang II molecule must adopt an extended structure in the AngII binding pocket.  相似文献   

16.
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.  相似文献   

17.
G Guillemette  E Escher 《Biochemistry》1983,22(24):5591-5596
The angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe, AT) receptor of bovine adrenocortex has been investigated with photosensitive analogues of AT. In a first series of experiments, we have shown that isolated cortical cells secrete aldosterone in a permanent and specific manner if they have been photolyzed in the presence of the photolabel [Sar1,(4'-N3)Phe8]AT. This permanent stimulation is in contrast to the smooth muscle assays where under similar conditions a permanent and specific block was always observed. It is assumed that the irreversible occupation of the AT receptor produces this effect. In a second type of experiment, we have shown that the AT binding site on adrenocortical membranes can be specifically and irreversibly occupied under similar conditions and that this occupation can be prevented in a competitive manner by the presence of nonphotosensitive hormone. Using a radioactive label, [Sar1,(3'-125I)Tyr4,(4'-N3)Phe8]AT, we have identified the AT receptor as a 300-kDa protein by means of gel filtration under nonreducing and nondenaturating conditions. Under reducing and denaturing conditions, a subunit of 60 kDs was found by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The AT receptor is proposed to be a 300-kDa protein with one binding subunit of 60 kDa.  相似文献   

18.
Analogues of angiotensin II with cyclohexylalanine (Cha) at position 4 or 8, and analogues of the competitive (type II) angiotensin antagonist [Sar1,Tyr(Me)4]ANG II (Sarmesin) with Cha at position 8, have been prepared by the solid phase method and purified by reversed-phase HPLC. Analogues of ANG II with Cha at position 8 in which the position 1 residue was substituted with sarcosine (Sar) or amino-isobutyric acid (Aib) or was deleted (Des), were slowly reversing (Type I) antagonists with "pA2" values in the rat isolated uterus assay of approximately 8.5. The additional substitution of Tyr(Me) for Tyr at position 4 of these peptides gave reversible competitive (Type I/II) antagonists with pA2 values of 6.7, 5.8, and less than 5, while substitution of Phe for Tyr gave pA2 values of 7.4, 6.7, and less than 5, respectively. All 19 peptides synthesized in this study had low intrinsic agonist activity in the rat isolated uterus assay except for the type I antagonists [Sar1, Cha8]ANG II (7%), [Aib1, Cha8]ANG II (12%) and [Des1, Cha8]ANG II (20%). These data illustrate that the substitution of Cha at position 8 of ANG II analogues produces potent antagonists; however, Type I antagonists retain significant agonist activity whereas Type I/II antagonists do not. In contrast, substitution of Cha at position 4 in a variety of ANG II analogues resulted in severely diminished biological activity, illustrating that the presence of an aromatic ring quadrupole at position 4 is obligatory for receptor binding and activity.  相似文献   

19.
Two pentapeptides, Ac-Tyr-Ile-His-Pro-Phe/Ile, were synthesized and shown to have angiotensin II AT2 receptor affinity and agonistic activity. Based on these peptides, a new series of 13 pseudopeptides was synthesized via introduction of five different turn scaffolds replacing the Tyr-Ile amino acid residues. Pharmacological evaluation disclosed subnanomolar affinities for some of these compounds at the AT2 receptor. Substitution of Phe by Ile in this series of ligands enhanced the AT2 receptor affinity of all compounds. These results suggest that the C-terminal amino acid residues can be elaborated on to enhance the AT2 receptor affinity in truncated Ang II analogues.  相似文献   

20.
In the active centre of pancreatic phospholipase A2 His48 is at hydrogen-bonding distance to Asp99. This Asp-His couple is assumed to act together with a water molecule as a catalytic triad. Asp99 is also linked via an extended hydrogen bonding system to the side chains of Tyr52 and Tyr73. To probe the function of the fully conserved Asp99, Tyr52 and Tyr73 residues in phospholipase A2, the Asp99 residue was replaced by Asn, and each of the two tyrosines was separately replaced by either a Phe or a Gln. The catalytic and binding properties of the Phe52 and Phe73 mutants did not change significantly relative to the wild-type enzyme. This rules out the possibility that either one of the two Tyr residues in the wild-type enzyme can function as an acyl acceptor or proton donor in catalysis. The Gln73 mutant could not be obtained in any significant amounts probably due to incorrect folding. The Gln52 mutant was isolated in low yield. This mutant showed a large decrease in catalytic activity while its substrate binding was nearly unchanged. The results suggest a structural role rather than a catalytic function of Tyr52 and Tyr73. Substitution of asparagine for aspartate hardly affects the binding constants for both monomeric and micellar substrate analogues. Kinetic characterization revealed that the Asn99 mutant has retained no less than 65% of its enzymatic activity on the monomeric substrate rac 1,2-dihexanoyldithio-propyl-3-phosphocholine, probably due to the fact that during hydrolysis of monomeric substrate by phospholipase A2 proton transfer is not the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号