首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biogeography of mammals on tropical Pacific islands   总被引:2,自引:0,他引:2  
Aim We examine the influence of geography on species richness and endemism of mammals on tropical Pacific archipelagos to determine the importance of intra‐ and inter‐archipelago speciation in promoting local and regional species richness. Location Thirty tropical Pacific archipelagos. Methods A distributional list of mammals on 30 archipelagos was compiled, and values for 10 geographical variables were estimated for each archipelago. Mammal species were placed in three different categories (continental, Pacific and endemic) based on their distribution. The total number of species and numbers of species within each category were related to the geographical variables using Poisson regression analysis. Results Species richness was related positively to variables describing land area, numbers of large islands and elevation; and negatively to variables describing isolation. Levels of endemism did not differ between volant and non‐volant species, but differed between mega‐ and microchiropterans. Main conclusions Variation in species richness of mammals in the tropical Pacific region can be accounted for by a combination of intra‐archipelago speciation within archipelagos composed of large islands, and inter‐archipelago speciation, particularly among more isolated archipelagos. Mammals were less widely distributed throughout the study area than previously found for butterflies, skinks or birds. However, the level of endemism was similar to that of skinks and birds on the same archipelagos, and was higher than that of butterflies.  相似文献   

2.
Many studies have tested the performance of terrestrial vertebrates as surrogates for overall species diversity, because these are commonly used in priority‐setting conservation appraisals. Using a database of 3663 vertebrate species in 38 Brazilian ecoregions, we evaluated the effectiveness of various subsets for representing diversity of the entire vertebrate assemblage. Because ecoregions are established incorporating information on biotic assemblages, they are potentially more amenable to regional comparison than are national or state lists. We used 10 potential indicator groups (all species; all mammals, birds, reptiles, or amphibians; all endemic species; and endemic species within each class) to find priority sets of ecoregions that best represent the entire terrestrial vertebrate fauna. This is the first time such tests are employed to assess the effectiveness of indicator groups at the ecoregion level in Brazil. We show that patterns of species richness are highly correlated among mammals, birds, amphibians, and reptiles. Furthermore, we demonstrate that ecoregion sets selected according to endemic species richness captured more vertebrate species per unit area than sets based on overall vertebrate richness itself, or than those selected at random. Ecoregion sets based on endemic bird, endemic reptile, or endemic amphibian richness also performed well, capturing more species overall than random sets, or than those selected based on species richness of one or all vertebrate classes within ecoregions. Our results highlight the importance of evaluating biodiversity concordance and the use of indicator groups as well as aggregate species richness. We conclude that priority sets based on indicator groups provide a basis for a first assessment of priorities for conservation at an infracontinental scale. Areas with high endemism have long been highlighted for conservation of species. Our findings provide evidence that endemism is not only a worthwhile conservation goal, but also an effective surrogate for the conservation of all terrestrial vertebrates in Brazil.  相似文献   

3.
Summary We examined the potential effects of geography on the distribution and speciation of skinks on tropical Pacific archipelagos. The entire tropical Pacific skink fauna was divided into continental (found also in continental areas), Pacific (endemic to the study area but found within more than one archipelago) and endemic (found within only one archipelago) species categories. The number and proportion of skinks within each species category were determined for each of the 27 archipelagos in the study area. Nine geographic variables reflecting archipelago size, isolation and elevation were estimated for each archipelago. Principal components analysis was used to reduce the nine variables to three uncorrelated composite variables that were interpreted as representing archipelago size, isolation and elevation. Numbers and proportions of skinks in each category within an archipelago were related to the composite geographic variables using multiple linear regression analysis. Archipelago size and isolation were important predictors of both skink diversity and endemism. Results were then compared to diversity and endemism of birds within the study area. Skinks showed an archipelago-wide level of endemism similar to that of birds. On an archipelago by archipelago basis, however, large differences between birds and skinks were evident. In particular, the New Caledonia skink fauna was much more endemic than that of birds. The bird faunas of Hawaii and the Marquesas were nearly completely endemic, while no endemic skinks occurred in these two archipelagos. These differences presumably reflect the relative dispersal powers of skinks and birds and, consequently, rates of colonization and speciation. Differences may also be due partly to morphological conservatism among isolated skink populations and the occurrence of cryptic species that have not yet been identified as separate species. The discovery of such cryptic species, however, is unlikely to increase the endemic skink fauna of Hawaii and other distant archipelagos to a level commensurate with that of birds. Differences in endemism between skinks and birds may also be due to unknown local ecological interactions.  相似文献   

4.
Nepal is located in the central part of the greater Himalayan range with a unique series of mountain chains formed by recent mountain building geological events. As one of the youngest mountains in the world it contributes to diversity of plants and also provided barriers to and corridors through which plants migrated during the ice ages. The higher altitudinal variation with the high mountains, deep river valleys and lowland plains combine with the effects of the summer monsoon and dry winter result with an extraordinary diversity of ecosystems including flora and fauna in a relatively small land area. The existing checklists for Nepal record some 6000 species of flowering plants and about 530 ferns. However, the botanical experts estimate that numbers may go up to 7000 when the poorly known remote regions are fully explored. The information on plant endemism in Nepal Himalaya is not adequately known as Nepal is still struggling to complete long awaited Flora of Nepal project. Endemic species are confined to specific areas and are the first to be affected by land use and other global changes. We sought to explore the spatial distribution of endemic plant species in Nepal in relation to the consequences associated with climatic and geologic changes over time in the region with the help of published literature. It was found that the endemism showed marked spatial variation between open moist habitat and dry inner valleys, the former with higher endemism. The updated records showed 312 flowering plant species to be endemic to Nepal with higher endemism around the elevation of 3800e4200 m at sea level. The recent human population explosion, intensified deforestation, habitat fragmentation and modern day environmental changes are posing greater threats to endemic plant in Nepal. The conservation status and threats to these peculiar species are unknown. Nevertheless, environmental degradation and high poverty rates create a potent mix of threats to biodiversity in this landscape.  相似文献   

5.
Most conservation decisions take place at national or finer spatial scales. Providing useful information at such decision-making scales is essential for guiding the practice of conservation. Brazil is one of the world’s megadiverse countries, and consequently decisions about conservation in the country have a disproportionate impact on the survival of global biodiversity. For three groups of terrestrial vertebrates (birds, mammals, and amphibians), we examined geographic patterns of diversity and protection in Brazil, including that of endemic, small-ranged, and threatened species. To understand potential limitations of the data, we also explored how spatial bias in collection localities may influence the perceived patterns of diversity. The highest overall species richness is in the Amazon and Atlantic Forests, while the Atlantic Forest dominates in terms of country endemics and small-ranged species. Globally threatened species do not present a consistent pattern. Patterns for birds were similar to overall species richness, with higher concentrations of threatened species in the Atlantic Forest, while mammals show a more generalized pattern across the country and a high concentration in the Amazon. Few amphibians are listed as threatened, mostly in the Atlantic Forest. Data deficient mammals occur across the country, concentrating in the Amazon and southeast Atlantic Forest, and there are no data deficient birds in Brazil. In contrast, nearly a third of amphibians are data deficient, widespread across the country, but with a high concentration in the far southeast. Spatial biases in species locality data, however, possibly influence the perceived patterns of biodiversity. Regions with low sampling density need more biological studies, as do the many data deficient species. All biomes except the Amazon have less than 3% of their area under full protection. Reassuringly though, rates of protection do correlate with higher biodiversity, including higher levels of threatened and small-ranged species. Our results indicate a need for expanded formal protection in Brazil, especially in the Atlantic forest, and with an emphasis on fully protected areas.  相似文献   

6.
Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche-based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2 = .09), whereas the null model that incorporated both physiography and species richness did (r2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.  相似文献   

7.
中国是世界12个生物多样性巨丰的国家之一,也是亚洲及太平洋地区生物多样性和特有性最高的两个国家之一。中国具有世界最高的山系和许多不同的生物栖息环境,跨古北和东洋两界。这些特征可用来说明其丰富的物种多样性和高特有性,迄今中国已报道的昆虫种类约为45000种。特有成分明显多于周边国家。特别是西南山地和热带地区,特有成分比例很高。人类干扰,栖息地丧失、森林减少和污染等迫使未知数目的种类处于濒危状态或已灭绝。本文提出了中国昆虫保护的建议,包括:鉴别优先保护对象,开展濒危物种的生物学和生态学研究,监测栖息地和多样性的丧失,编制珍稀和濒危物种“红色名录”和数据库,建立昆虫保护区,开发昆虫人工饲养和繁殖技术。  相似文献   

8.
Richness of endemic species is considered important for biodiversity conservation and avifaunal regionalization, but no detailed studies concerning the subregional endemism have yet been done in China. Here we investigate the assemblage of China avian endemics of each avifaunal subregion, and analyze the faunal subregional species diversity, subspecific differentiation, and their relationships. The endemic species richness is found to be the highest in the Southwest Mountainous subregion where 60 species account for 57.1% of China’s 105 endemics. Seventy seven species accounting for 73.3% are monotypic. Twenty eight species (26.7%) occurred in only one subregion; the mean was 3.14±1.929 subregions, while 3 species were found widespread over 8 subregions. The number of species distributed only at one specific subregion (EOSR) is the highest in Taiwan subregion. The Southwest Mountainous subregion has the second highest EOSR and the highest richness of monotypic species, but the ratio of numbers of monotypic species or EOSR to the numbers of its subregional overall endemic species is not high in this subregion (68.3%; 10.0%). On the contrary, Taiwan subregion does not have higher richness of overall endemic species and monotypic species, but the EOSR is the highest, while the ratio of numbers of monotypic species or EOSR to the numbers of its subregional overall endemic species is also the highest among all subregions (76.2%; 71.4%). From the evidence of comparing subregional distribution of overall endemic species, EOSR, monotypic species and subspecific diversification, we may conclude that geographical isolation might be the main effect factor contributing to both subspecific diversification and avian subregional endemism in China. The higher endemic and monotypic richness in the Southwest Mountainous subregion may also indicate that the subregion’s avifaunal evolutionary and ecological isolation results from the highly diversified habitats and geographical environments as well as the historical effects from the primitive avifauna.  相似文献   

9.
Abstract China is among the twelve megadiversity countries in the world and one of the two countries with the highest biodiversity and endemism in Asia and South-Pacific region. China has the highest mountain system of the world and different types of environments inhabited by living organisms, ranging from the Palaearctic to Oriental Realms. These characteristics account for the magnificent species diversity and high level of endemism. Insects of 45 000 species have been recorded in China by now. The total endemic elements are obviously much more than the neighbouring countries. Especially in the south-west mountainous region and tropical areas the endemic elements occupy high proportions. The human disturbances, original habitat losses due to reclamation, deforestation, pollution, etc., are driving undetermined number of species to be endangered or extinct. Recommendations of China's insect conservation are hereon presented: identifying conservation priorities, investigating the biology and ecology of endangered species, monitoring habitat and diversity losses, compiling the "Red List" and the database of rare and endangered species, establishing reserves for insect conservation, and developing techniques of insect farming and ranching.  相似文献   

10.
Endemism in Namibia: patterns, processes and predictions   总被引:1,自引:1,他引:0  
Sandwiched between the Namib and Kalahari Deserts of southwestern Africa are the karooid and escarpment biotopes of Namibia which are rich in endemics of many taxa. Most plant, invertebrate, amphibian, reptile, mammal and bird species endemic to Namibia are found in a zone running through, and to the west of, Namibia's escarpment region. There is also an important region of endemism for succulent plants, reptiles and invertebrates in the Succulent Karoo biome. Congruence between endemism hotspots, particularly on rocky substrates, is remarkably high for most taxa, implying broadly similar speciation processes. Possible speciation mechanisms in different parts of the country include the spatial isolation of rupicolous taxa such as insects and reptiles by the formation of large coastal dune fields; the expansion and contraction of wooded savannas during pluvial and interpluvial periods; and global temperature shifts which created highland refugia for frost-susceptible plants and poikilotherms. Areas of endemism and species richness overlap poorly for Namibia's mainly arid-dwelling endemic vertebrates, as richness is highest in the mesic wetlands and woodlands of northeast Namibia. The overlap for succulent plants, insects and arachnids, however, is relatively high. Centres of endemism for plants and vertebrates fall mainly outside protected areas, as few parks were established with biodiversity indices in mind. Our analysis of endemism congruence provides a strong platform for the promulgation of new protected areas to safeguard Namibia's unique biota. Furthermore, analysis of speciation patterns and processes is a useful predictive tool for the identification of other biotically important sites.  相似文献   

11.
Distribution patterns of plant species endemic to Ecuador and adjacent parts of southern Colombia and northern Peru are analysed on the basis of information in the Flora of Ecuador. A total of 827 restricted-range species were found, many of which are known from extremely small areas, often only one or a few localities. A total of 27% of the species treated in the Flora of Ecuador are endemic to that country. The overall proportion of endemic and restricted-range species is greater in the Andes than in the lowland areas on either side of these mountains; particularly the southern Andes appears to be very rich in endemic species. Spatial analysis of distribution data results in the recognition of 15 floristic elements and 18 geographical endemism regions in Ecuador, the characteristics of which are discussed. Comparison with distribution patterns of restricted-range bird species show a general correspondence, with the main difference that birds tend to be more widely distributed than plants along the Andes. Comparison of the results with the location of national parks and other protected areas shows that the endemic floras in the northern and eastern parts of the country are much better protected than those of the southern and western parts.  相似文献   

12.
The bird fauna of the Brazilian Atlantic Forest is exceptionally diverse and threatened, with high levels of endemism. Available lists of the endemic birds of the Atlantic Forest were generated before recent taxonomic revisions lumped or split species and before the recent increase in species occurrence records. Our objective, therefore, was to compile a new list of the endemic birds of the Atlantic Forest, characterize these species in terms of conservation status and natural history traits, and map remaining vegetation and protected areas. We combined GIS analysis with a literature search to compile a list of endemic species and, based on the phylogeny and distribution of these species, characterized areas in terms of species richness, phylogenetic diversity, and endemism. We identified 223 species of birds endemic to the Atlantic Forest, including 12 species not included in previous lists. In addition, 14 species included in previous lists were not considered endemic, either because they occur outside the Atlantic Forest biome or because they are not considered valid species. The typical Atlantic Forest endemic bird is a small forest‐dependent invertivore. Of the species on our list, 31% are considered threatened or extinct. Only ~ 34% of the spatial analysis units had > 10% forest cover, and protected area coverage was consistently low (< 1%). In addition, we found spatial incongruity among the different measures of biodiversity (species richness, relative phylogenetic diversity, restricted‐range species, and irreplaceability). Each of these measures provides information concerning different aspects of biological diversity. However, regardless of which aspect(s) of biodiversity might be considered most important, preservation of the remaining areas of remnant vegetation and further expansion of protected areas are essential if we are to conserve the many endemic species of birds in the Atlantic Forest.  相似文献   

13.
Burgess, N., de Klerk, H., Fjeldsá, J., Crowe, T. & Rahbek, R. 2000. A preliminary assessment of congruence between biodiversity patterns in Afrotropical forest birds and forest mammals. Ostrich 71 (1 & 2): 286–291.

Databases compiled for forest birds and forest mammals in the Afrotropics were tested for congruence of overall patterns and hotspots of species richness and endemism. We also looked at how well a near-minimum set of priority areas for one taxon catered for the second taxon. Overall species richness and richness hotspots of forest birds were significantly correlated with those of forest mammals, as was the case for overall endemism. Endemism hotspots for forest birds and mammals were not significantly correlated. The near-minimum set for forest birds represented 136 (76.5%) forest mammal species. The near-minimum set for forest mammals represented 350 (93.62%) forest bird species. However, to represent all forest mammals three times each, 51 grids were needed in addition to the 78 chosen as a near-minimum set for forest birds, and to represent all forest birds three times each, 43 more grids were needed in addition to the 80 selected for forest mammals. There is some congruence between the patterns of richness, endemism and near-minimum sets for forest birds and mammals in the Afrotropics, but the one taxon does not provide the ideal conservation solution for the other. Further refinement of the databases used in this paper would allow for more rigorous testing of congruence between these two groups.  相似文献   

14.
Mexico is considered an exceptional biogeographic area with a varied endemic flora, however spatial phylogenetic measures of biodiversity have not yet been estimated to understand how its flora assembled to form the current vegetation. Patterns of species richness, endemism, phylogenetic diversity, phylogenetic endemism and centers of neo‐ and paleo‐endemism were determined to examine differences and congruence among these measures, and their implications for conservation. Of 24 360 vascular plant species 10 235 (42%) are endemic. Areas of endemism and phylogenetic endemism were associated with dry forests in zones of topographic complexity in mountain systems, in deserts, and in isolated xeric vegetation. Every single locality where seasonally tropical dry forests have been reported in Mexico was identified as an area of endemism. Significant phylogenetic diversity was the most restricted and occurred in the Trans‐Mexican Volcanic Belt and in the Sierra de Chiapas. Notably, the highest degree of phylogenetic clustering comprising neo‐, paleo‐, and super‐endemism was identified in southernmost Mexico. Most vascular plant lineages diverged in the Miocene (5–20 mya) when arid environments expanded across the world. The location of Mexico between two very large landmasses and the fact that more than fifty percent of its surface is arid favored the establishment of tropical lineages adapted to extreme seasonality and aridity. These lineages were able to migrate from both North and South America across Central America presumably during the Miocene and to diversify, illustrating the signature of the flora of Mexico of areas of endemism with a mixture of neo‐ and paleo‐endemism.  相似文献   

15.
物种多度与分布幅之间的正相关被认为是一种普遍的规律。但近年在热带山地和岛屿的研究发现多度-分布幅关系会出现不相关或负相关的现象;该现象可能是由于当地多度高且分布幅小的特有种比例较高所导致。在喜马拉雅山东段的勒布沟沿海拔2350—4950 m开展研究:1)记录了当地鸟类多度垂直分布格局;2)验证了该区繁殖鸟总体多度-垂直分布幅关系,并对比了特有种和非特有种分组子集多度-垂直分布幅关系、平均多度和垂直分布中心的差异。研究发现勒布沟鸟类多度垂直分布格局为驼峰格局。该区繁殖鸟类与非特有种的多度-垂直分布幅关系均为正相关,但特有种的多度-垂直分布幅关系为不相关。特有种的多度及海拔分布中心位置均高于非特有种。结果表明区域的鸟类特有性对多度-垂直分布幅关系存在着重要的影响;地理隔离导致的区域物种组成差异,是造成多度-分布幅关系模式变化的重要原因之一。  相似文献   

16.
Global Red List data on mammals, birds and plants for over 100non-island nations are used to identify the impact of area, endemism, humanpopulation, and many other social variables (urbanized population,human-dominated land, national wealth, % land protected) on proportions ofthreatened species among nations. Human population size and, especially,proportion of endemic species emerge as the strongest correlates of proportionof threatened species in nations. Area tends to increase both human populationand proportion of endemics and thus increases the proportion of threatenedspecies. Increasing wealth is associated with increased relative threat inmammals and plants. Proportion of land protected is significantly associatedwith decreased relative threat in mammals and birds.  相似文献   

17.
Aim This study investigated spatial patterns of endemism in the flora of Namibia's succulent karoo in order to generate information for conservation planning. Location The study area, the Sperrgebiet, comprises the majority of Namibia's portion of the succulent karoo biome which is the south‐west corner of the country. This is an arid area that has been off limits to public access, farming and tourism for nearly a century due to restrictions imposed by the diamond industry. Methods Based on existing distribution records, areas of high concentrations of endemic plants were identified using numbers of endemics and weighted endemics according to area of occupancy. The resolution of the available data was quarter degree squares (15‐min intervals of latitude and longitude grids). Results At the scale of this study straight numbers of endemics generated similar results to the endemics weighted according to area of occupancy, which gives sparsely distributed species a higher weighting. Based on the current distribution records, 17.7% (184 species) of the Sperrgebiet's spermatophyte flora is endemic. The ‘hotspots of endemism’ comprised from north to south: Lüderitz‐Kowisberge, Klinghardt Mountains, Aurusberge‐Heioab, Witpütz, Skorpion and Obib‐Schakalsberge. Taking also areas into account that stand out because of their high proportion of local endemics, this adds Grillental and the central coastal area from Pomona to Baker's Bay to the areas of importance for plant endemism. Main conclusions The Sperrgebiet's endemic flora is special in taxonomic composition in that it does not present a subset of the total flora of this area, but shows a remarkably high representation of the families Mesembryanthemaceae and Liliaceae (sensu lato). Compared with other arid areas, the level of endemism in the Sperrgebiet is high, but not compared with the succulent karoo in general or other hotspots in the succulent karoo biome, such as the Richtersveld. The proportion of local endemics (13.5%) is high compared with some endemism hotspots in southern Africa. Hotspots of plant endemism provide an important tool to contribute to conservation planning studies. This study also highlighted the importance of centralized data bases without which these analyses would not have been possible. Further plant collecting is required to fill presently data‐deficient areas and studies at a finer spatial resolution taking habitat requirements into account are needed to elucidate some of the factors contributing to plant endemism in this area.  相似文献   

18.
The southern Australian marine macroalgal flora has the highest levels of species richness and endemism of any regional macroalgal flora in the world. Analyses of species composition and distributions for the southern Australian flora have identified four different floristic elements, namely the southern Australian endemic element, the widely distributed temperate element, the tropical element and a cold water element. Within the southern Australian endemic element, four species distribution patterns are apparent, thought to largely result from the Jurassic to Oligocene fragmentation of East Gondwana, the subsequent migration of Tethyan ancestors from the west Australian coast and the later invasion of high latitude Pacific species. Climatic deterioration from the late Eocene to the present is thought responsible for the replacement of the previous tropical south coast flora by an endemic temperate flora which has subsequently diversified in response to fluctuating environmental conditions, abundant rocky substrata and substantial habitat heterogeneity. High levels of endemism are attributed to Australia's long isolation and maintained, as is the high species richness, by the lack of recent mass extinction events. The warm water Leeuwin Current has had profound influence in the region since the Eocene, flowing to disperse macroalgal species onto the south coast as well as ameliorating the local environment. It is now evident that the high species richness and endemism we now observe in the southern Australian marine macroalgal flora can be attributed to a complex interaction of biogeographical, ecological and phylogenetic processes over the last 160 million years.  相似文献   

19.
Aim We tested the hypothesis that endemism of black flies in the Caucasus of Armenia is reflected in their gut symbiotes, i.e. trichomycete fungi and ichthyosporean protists. Location The study area, Armenia, is a biodiversity hotspot, with high levels of plant and animal endemism. Located in the southern Caucasus, Armenia is a rugged, mountainous, landlocked country of 29,800 km2, with fast‐flowing rivers and little forested land. About half of the 51 species of black flies in Armenia are endemic to the Caucasus. Methods The larvae of 22 species of black flies, including seven endemic to the Caucasus, were collected from 35 sites throughout Armenia, from 1998 to 2004, and assayed microscopically for gut‐inhabiting trichomycete fungi and ichthyosporean protists. Results Nearly 68% of larval black flies in Armenia contained at least one species of gut symbiote, with a mean of 0.9 ± 0.04 species per host larva. Eight species of trichomycete fungi and two species of ichthyosporeans were found in larval guts. Seven of these species were recorded for the first time in Asian black flies. Species accumulation curves showed no additional species of gut symbiotes after 17 host species and 22 sites had been examined. All gut symbiotes were widely distributed, indicating an absence of endemic trichomycetes in the black flies of Armenia. Main conclusions Although the Caucasus Region is noted for its high levels of endemism for plants and animals, including black flies, the gut symbiotes of black flies are all widespread species. The absence of endemic gut symbiotes in larval black flies might be explained by their lack of host specificity; an absence of host specificity would not constrain the geographical distribution of the symbiotes.  相似文献   

20.
Many invasive species cause ecological or economic damage, and the fraction of introduced species that become invasive is an important determinant of the overall costs caused by invaders. According to the widely quoted tens rule, about 10% of all introduced species establish themselves and about 10% of these established species become invasive. Global taxonomic differences in the fraction of species becoming invasive have not been described. In a global analysis of mammal and bird introductions, I show that both mammals and birds have a much higher invasion success than predicted by the tens rule, and that mammals have a significantly higher success than birds. Averaged across islands and continents, 79% of mammals and 50% of birds introduced have established themselves and 63% of mammals and 34% of birds established have become invasive. My analysis also does not support the hypothesis that islands are more susceptible to invaders than continents, as I did not find a significant relationship between invasion success and the size of the island or continent to which the species were introduced. The data set used in this study has a number of limitations, e.g. information on propagule pressure was not available at this global scale, so understanding the mechanisms behind the observed patterns has to be postponed to future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号