首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
盐胁迫下接种AM真菌对玉米耐盐性的影响   总被引:1,自引:0,他引:1  
以玉米品种陕单16号幼苗为材料,用盆栽法研究了不同含盐量(0、0.5、1.0、1.5和2.0 NaCl g/kg)土壤接种AM真菌(Glomus mosseae)对玉米幼苗生物量、盐害级数,以及叶片中电解质透出率、丙二醛、O·2-、H2O2含量和保护酶活性的影响.结果表明:在盐胁迫下,接种AM真菌增加了玉米植株生物量,降低了玉米的盐害级数;菌根植株叶片中过氧化氢酶的活性高于非菌根植株,而过氧化物酶、抗坏血酸氧化酶和多酚氧化酶的活性则为非菌根植株高于菌根植株;超氧化物歧化酶的活性在NaCl浓度为0、0.5和1.0 g/kg时为非菌根植株高于菌根植株,而在NaCl浓度为1.5和2.0 g/kg时则为菌根植株高于非菌根植株;菌根植株叶片中电解质透出率、丙二醛、O·2-和H2O2的含量低于非菌根植株.可见,AM真菌的侵染提高了玉米的耐盐性,缓解了由盐胁迫引起的过氧化胁迫对玉米植株的伤害,但这一缓解作用并不只是通过提高保护酶活性来实现的,可能还存在一些非酶促的调节机制.  相似文献   

2.
为探究接种丛枝菌根(arbuscular mycorrhiza,AM)真菌对不同盐胁迫水平下留兰香和常夏石竹侵染特性与生理指标的影响,该研究采用盆栽试验的方法,将留兰香和常夏石竹分为接种处理与对照处理,并施加不同浓度(0、50、100、150、200 mmol/L)的NaCl胁迫,胁迫结束后测定两种植物的侵染特性与生理...  相似文献   

3.
盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响   总被引:27,自引:4,他引:27  
在NaCl胁迫下无论接种AM真菌与否玉米植株生物产量均减少,但不接种处理的减少幅度比较种处理的高10个百分点左右,盐胁迫下接种AM真菌的玉米根系和地上部的干重、叶片水热均高于不接种处理、叶片脯氨酸含量低于不接种处理,在盐胁迫下真菌菌丝对玉米植株营养的贡献由45.3%降为42.6%,AM真菌对植株生长的效应反而由30.9%提高到63.5%,说明AM真菌主米耐盐性的机理与改善植株的水分状况和P营养状况  相似文献   

4.
以非灭菌土为生长基质,采用盆栽实验研究了不同施磷水平下接种摩西球囊霉(Glomus mosseae)对白术生长和生理特征的影响.结果表明,摩西球囊霉能够与白术形成良好的共生关系,在0~0.4 g P/kg土水平时,接种摩西球囊霉可显著提高白术根系菌根侵染率,并以0.05 g P/kg土水平时侵染率最大,磷水平继续提高则菌根侵染率反而降低;接种摩西球囊霉对白术地下部的影响效果尤为明显,其根长、株高、地下部干重均在0.1 g P/kg水平时达到最大值;适量施磷条件下,接种摩西球囊霉可显著提高植株可溶性糖和可溶性蛋白含量,有效增强保护酶SOD、POD和CAT活性.研究发现,当施磷量为0.05~0.1 g/kg土时,摩西球囊霉接种效果最佳,对白术的生长最为有利.  相似文献   

5.
在盐胁迫下,采用盆栽方法研究AM真菌对红花植株耐盐生理指标的影响,以不接种为对照。结果表明,在0、0.1%和0.2%浓度NaCl胁迫下,AM真菌促进红花幼苗的生长,接种真菌的红花叶片SOD和CAT活性、脯氨酸和可溶性蛋白的含量都高于不接种处理的,叶片细胞质膜透性和MDA含量则低于不接种处理的,结果证明AM真菌可以提高植物的耐盐性。  相似文献   

6.
张宇亭  朱敏  线岩相洼  申鸿  赵建  郭涛 《生态学报》2012,32(22):7091-7101
在温室盆栽条件下,分别模拟单作、间作和尼龙网分隔种植,比较接种丛枝菌根(arbuscular mycorrhizal, AM)真菌Glomus intraradicesGlomus mosseae对菌根植物玉米和非菌根植物油菜生长和磷吸收状况的影响,并分析土壤中各无机磷组分的变化。结果发现,接种AM真菌可以促进土壤中难溶性磷(Ca10-P和O-P)向有效态磷转化,并显著降低总无机磷含量 (P<0.05),显著提高菌根植物玉米的生物量和磷吸收量(P<0.05),特别是在间作体系中使玉米的磷营养竞争比率显著提高了45.0%-104.1% (P<0.05),显著降低了油菜的生物量和磷吸收量(P<0.05),从而增强了了菌根植物的竞争优势,降低了非菌根植物与菌根植物的共存能力。揭示了石灰性土壤中AM真菌对植物物种多样性的影响,有助于更加全面地理解AM真菌在农业生态系统中的作用。  相似文献   

7.
丛枝菌根真菌对紫薇耐盐性的影响   总被引:1,自引:0,他引:1  
于盆栽条件下对紫薇(Lagerstroemia indica)接种Funneliformis mosseae,并施加不同浓度盐(0、0.15%、0.30%和0.45%NaCl)处理后,测定菌根侵染率、菌根依赖性、生长指标、根系参数、生理指标和耐盐系数。结果表明,接种F.mosseae显著提高盐胁迫下紫薇的株高、鲜重、干重、根长、根尖数、平均直径以及总长度,进而增大了紫薇根系的总表面积与总体积,促进了紫薇根系的生长;增加了叶片N、P、K和叶片叶绿素含量,其中0.15%NaCl胁迫下,接种处理紫薇叶片N含量比对照提高最大,为对照的1.5倍。0.45%NaCl胁迫下,接种处理后紫薇叶片P、K和叶绿素含量比对照提高最大,分别为对照的1.5、1.3和2.4倍;接种能显著降低盐胁迫下紫薇叶片Na+和Cl-含量,其中0.15%NaCl胁迫下,接种处理的Na+和Cl-含量比未接种降低幅度最大,分别为对照的59%和74%;降低盐胁迫下紫薇叶片丙二醛含量和膜透性,其中0.30%NaCl胁迫下,接种处理紫薇叶片的丙二醛含量和膜透性分别比未接种的降低33%和12%;接种F.mosseae后紫薇叶片脯氨酸含量显著降低,可溶性糖含量显著提高,且随盐浓度的增大,呈逐渐下降趋势;接种F.mosseae的紫薇耐盐系数比未接种处理提高27%。这些结果表明接种F.mosseae提高了紫薇的耐盐性。  相似文献   

8.
盐碱胁迫下AM真菌对羊草生长及生理代谢的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用盆栽控制试验研究了盐碱胁迫下AM真菌对羊草生长及生理代谢的影响。结果表明,盐碱胁迫显著降低了AM真菌的侵染率与侵染强度,且具有高pH的碱胁迫的抑制效应更强。接种AM真菌一定程度上提高了胁迫下羊草幼苗的生物量及光合色素(Chl a,Chl b和Car)含量。随着盐碱胁迫浓度的增加,羊草幼苗积累了大量的Na~+,并抑制了其对K~+的吸收,接种AM真菌一定程度上降低了Na~+的积累,并缓解了胁迫下K~+含量的降低,提高NO_3~-含量从而改善羊草幼苗的离子平衡。在碱胁迫下,柠檬酸、苹果酸含量均显著提高,在盐胁迫下,仅苹果酸含量显著提高,而接种AM真菌使盐碱胁迫下有机酸含量一定程度降低。在盐碱胁迫条件下,接种AM使羊草体内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性明显提高,增强宿主植物体内氧自由基的清除能力。接种AM真菌明显提高羊草幼苗抗盐碱能力,因胁迫类型不同,抗逆机理有所差异。研究结果为利用羊草进行生物改良退化盐碱草地以及菌肥的应用提供了科学依据,也为探求羊草-丛枝菌根共生体对盐碱胁迫的响应和反馈提供了数据支持。  相似文献   

9.
不同强度盐胁迫下AM真菌对羊草生长的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
张义飞  王平  毕琪  张忠辉  杨允菲 《生态学报》2016,36(17):5467-5476
不同浓度NaCl盐处理下,AM真菌对羊草(Leymus chinensis)的侵染能力和对植物生长的影响,从植物形态和离子含量角度探讨了AM真菌提高羊草耐盐性的作用机理。结果表明,在高盐胁迫下,AM真菌显著降低了盐胁迫效应,提高了羊草生物量,菌根效应明显。菌根化羊草的根茎比显著增加,并且N、P浓度较高,Na~+和Cl~-离子浓度较低,表明AM真菌即促进羊草对营养元素的吸收,又减少了离子毒害。菌根化羊草的Ca~(2+)和K~+离子浓度,以及P/Na~+和K~+/Na~+比高于非菌根化羊草,表明AM真菌可通过调节渗透势以避免或减缓盐胁迫造成的生理缺水。随着盐胁迫的增加,菌根化羊草对磷的依赖性逐渐转换为对钾的依赖性。研究结果有助于揭示AM真菌提高植物耐盐能力的作用机理,并对应用菌根技术修复盐化草地具有理论指导意义。  相似文献   

10.
丛枝菌根真菌提高植物耐盐性的作用机制   总被引:5,自引:4,他引:1       下载免费PDF全文
本文阐述了盐胁迫对丛枝菌根真菌(AMF)生理生态学效应的影响以及对植物的促生作用,并从营养吸收、渗透调节、抗氧化物酶、激素及基因表达等几方面综述了国内外关于AMF提高植物耐盐性生理及分子机制的研究进展,指出目前该领域研究中尚需解决的问题.  相似文献   

11.
丛枝菌根真菌对植物耐旱性的影响研究进展   总被引:3,自引:0,他引:3  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能与植物根系形成互惠共生体,对植物的生长发育和抗逆性有积极的影响,在改善植物水分代谢和提高植物耐旱性中发挥了重要作用.本文综述了近年来AMF与植物水分代谢关系的研究进展,从植物的光合作用、蒸腾与气孔导度、水分利用效率、水力导度、渗透调节、内源激素和抗氧化系统等方面说明AMF对植物水分代谢的影响.从4个方面介绍了AMF提高植物耐旱性的机理:1)菌丝网络增加植物根系吸收范围;2)增强植物保水能力和抗氧化能力;3)稳定和改善土壤团聚体;4)促进植物养分吸收.并提出今后研究需注意的问题和建议.  相似文献   

12.
Plant roots interact with a wide variety of rhizospheric microorganisms, including bacteria and the symbiontic arbuscular mycorrhizal (AM) fungi. The mycorrhizal symbiosis represents a series of complex feedbacks between plant and fungus regulated by their physiology and nutrition. Despite the widespread distribution and ecological significance of AM symbiosis, little is known about the potential of AM fungi to affect plant VOC metabolism. The purpose of this study was to investigate whether colonization of plant roots by AM fungi and associated soil microorganisms affects VOC emission and content of Artemisia annua L. plants (Asteraceae). Two inoculum types were evaluated: one consisted of only an arbuscular mycorrhizal (AM) fungus species (Glomus spp.), and the other was a mixture of different Glomus species and associated soil bacteria. Inoculated plants were compared with non-inoculated plants and with plants supplemented with extra phosphorus (P) to obtain plants of the same size as mycorrhizal plants, thus excluding potentially-confounding mycorrhizal effects on shoot growth. VOC emissions of Artemisia annua plants were analyzed by leaf cuvette sampling followed by off-line measurements with pre-concentration and gas chromatography mass spectrometry (GC-MS). Measurements of CO(2) and H(2)O exchanges were conducted simultaneously. Several volatile monoterpenes were identified and characterized from leaf emissions of Artemisia annua L. by GC-MS analysis. The main components identified belong to different monoterpene structures: alpha-pinene, beta-pinene, camphor, 1,8-cineole, limonene, and artemisia ketone. A good correlation between monoterpene leaf concentration and leaf emission was found. Leaf extracts included also several sesquiterpenes. Total terpene content and emission was not affected by AM inoculation with or without bacteria, while emission of limonene and artemisia ketone was stimulated by this treatment. No differences were found among treatments for single monoterpene content, while accumulation of specific sesquiterpenes in leaves was altered in mycorrhizal plants compared to control plants. Growth conditions seemed to have mainly contributed to the outcome of the symbiosis and influenced the magnitude of the plant response. These results highlight the importance of considering the below-ground interaction between plant and soil for estimating VOC emission rates and their ecological role at multitrophic levels.  相似文献   

13.
Temporal variations in the relationships among plant nutrient concentrations, soil properties and arbuscular-mycorrhizal (AM) fungal dynamics were studied along a topographic and saline gradient in a temperate grassland soil. Soil and plant ( Lotus tenuis , Paspalum vaginatum , Stenotaphrum secundatum ) samples were collected on four seasonally based occasions. The morphology of AM root colonization had a similar pattern in the plants studied. Maximum arbuscular colonization occurred at the beginning of the growing season in late winter and was minimal in late summer, but maximal vesicular colonization occurred in summer and was minimal in winter, suggesting a preferential production of these morphological phases by the fungus with respect to season. The greatest arbuscular colonization was associated with the highest N and P concentrations in plant tissue, suggesting a correspondence with increases in the rate of nutrient transfer between the symbiotic partners. Water content, salinity and sodicity in soil were positively associated with AM root colonization and arbuscule colonization in L. tenuis , but negatively so in the grasses. There were distinct seasonally related effects with respect to both spore density and AM colonization, which were independent of particular combinations of plant species and soil sites.  相似文献   

14.
Chenopods are generally regarded as non-host plants for mycorrhizal fungi and are believed not to benefit from colonization by mycorrhizal fungi. Perennial Atriplex nummularia Lindl., growing under field conditions, showed a relatively high level of colonization by mycorrhizal fungi (10–30% of root length colonized) in spring and summer. Accordingly, two glasshouse experiments were designed to assess the effects of inoculation with mycorrhizal fungi (with a single species or a mixture of different species) on growth, nutrient uptake, and rhizosphere bacterial community composition of A. nummularia at high and low salinity levels (2.2 and 12 dSm–1). Only low and patchy colonization by mycorrhizal fungi (1–2 of root length colonized) was detected in inoculated plants under glasshouse conditions which was unaffected by salinity. Despite the low colonization, inoculation increased plant growth and affected nutrient uptake at both salinity levels. The effects were higher at an early stage of plant development (6weeks) than at a later stage (9–10 weeks). Salinity affected the bacterial community composition in the rhizosphere as examined by ribosomal intergenic spacer amplification (RISA) of 16S rDNA, digitization of the band patterns and multivariate analysis. The effects of inoculation with mycorrhizal fungi on growth of A. nummularia may be attributed to (i) direct effects of mycorrhizal fungi on plant nutrient uptake and/or (ii) indirect effects via mycorrhizal-induced changes in the bacterial community composition.  相似文献   

15.
16.
Versaw  Wayne K.  Chiou  Tzyy-Jen  Harrison  Maria J. 《Plant and Soil》2002,244(1-2):239-245
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution.  相似文献   

17.
18.
19.
Molecular identification and phylogeny of arbuscular mycorrhizal fungi   总被引:7,自引:2,他引:7  
Redecker  Dirk 《Plant and Soil》2002,244(1-2):67-73
The fossil record and molecular data show that the evolutionary history of arbuscular mycorrhizal fungi (Glomales) goes back at least to the Ordovician (460 million years ago), coinciding with the colonization of the terrestrial environment by the first land plants. At that time, the land flora only consisted of plants on the bryophytic level. Ribosomal DNA sequences indicate that the diversity within the Glomales on the family and genus level is much higher than previously expected from morphology-based taxonomy. Two deeply divergent lineages were found and described in two new genera, Archaeospora and Paraglomus, each in its own family. Based on a fast-growing number of available DNA sequences, several systems for molecular identification of the Glomales within roots have been designed and tested in the past few years. These detection methods have opened up entirely new perspectives for studying the ecology of arbuscular mycorrhiza.  相似文献   

20.
Diversity of arbuscular mycorrhizal fungi (AMF) in 27-year long-term NP-fertilization plots under a maize cropping system in Thailand was studied through spore morphological characterization. The plots received 0–0, 60–60, 120–120 and 180–180 kg N-P2O5 ha–1 year–1 as ammonium sulfate and triple superphosphate. The plots were sampled monthly for one year, the AMF spores were counted and morphotyped, and taxa were identified after morphotyping and monospecific pot culture. Spore number g–1 soil, relative spore abundance and Shannon-Wiener indexes were calculated. Sixteen putative taxa were recorded from the field of which nine sporulated on maize roots in pot culture. The long-term fertilization caused decreases in AMF total spore numbers and variation in species diversity depended on sampling time. Effects of fertilization on spore number and also relative spore abundance varied with species and sampling time. Among the nine species sporulating under maize, only Acaulospora sp.1 showed no change (P > 0.003 after Bonferroni correction) in spore number with fertilization in the field; and was therefore classified as an AMF species insensitive to fertilization. Spores of Entrophospora schenckii, Glomus mosseae, Glomus sp.1, Glomus geosporum-like and Scutellospora fulgida, though they decreased in absolute numbers in response to fertilization, showed no change (P > 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species slightly sensitive to fertilization. Three unidentified species of Glomus, though they decreased in absolute numbers in response to fertilization, showed decreases (P < 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species highly sensitive to fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号