首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
During the course of chronic renal failure (CRF) in man, renal osteodystrophy (osteitis fibrosa and/or osteomalacia) gradually develops. The present study aimed to establish a similar type of CRF leading to renal osteodystrophy in rats.During progressive CRF development over 225 days after 5/6 nephrectomy, the following serum variables were measured: creatinine, immunoreactive parathryoid hormone (iPTH), 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), a25-hydroxyvitamin D3, (25(OH)D3), alkaline phosphatase, albumin, phosphate, urea nitrogen, total calcium, and other blood electrolytes. Subsequent to sacrifice, mechanical properties of the rat femur, bone histomorphometry (osteoid and eroded surfaces) and bone contents of calcium, phosphate and hydroxyproline were also examined.Serum creatinine in rats with CRF gradually escalated by some 70%, while circulating 1,25(OH)2D3 was reduced beneath detection level. Total plasma calcium and phosphate concentrations were, however, almost unchanged indicating that PTH-induced bone remodeling due to moderate hyperparathyroidism sustained calcium homeostasis. Alkaline phosphatase levels were reduced by some 50%, which reflects chronically impeded bone formation. Bone histomorphometry assessment revealed substantial elevation of resorption with moderate accompanying fibrosis in about 70% of afflicted animals. Bone calcium, phosphate and hydroxpyroline contents remained unaltered. However, hydroxoproline/calcium ratio was marginally reduced. These results, together with altered mechanical bending stress characteristics and diminished diaphysis cross section area, confirm development of mixed bone lesions in the uremic animals.Our results are compatible with the early development of CRF in man. The established rat model is therefore useful in elucidating the precipitation and early treatment of renal osteodystrophy in humans.  相似文献   

2.
Regulation of G protein function: Implications for heart disease   总被引:3,自引:0,他引:3  
Heterotrimeric GTP-binding and -hydrolyzing proteins (G proteins) link members of a family of seven-helix transmembrane receptors (G protein-coupled receptors, GPCR) to intracellular effectors. The coupling mechanism involves the G protein completing a cycle of activation, dissociation into and subunits, deactivation, and reassociation. At the center of this cycle is the subunit, in which activation by GPCR, GTPase activity, and regulation of effector are combined. Whereas G's functional domains and residues had already been inferred from mutagenesis studies, the recent solution of the crystal structure has elucidated the structural basis of subunit function. It is now clear that an irregularity in any GPCR pathway component could cause a physiological defect. This is confirmed by the identification of mutations in GPCR and G's in various human diseases. Although several cardiomyopathies are associated with abnormal GPCR function, mutations are unlikely in these disorders. The last few years, other aspects of G protein function have moved into focus: e.g. posttranslational modifications; effector regulation by subunits; GTPase activating protein (GAP) activity of effectors; G protein expression levels etc. When comparing the regulation of G protein functional activity in cAMP and in inositol phosphate generating pathways, an extrapolation can be made to data on the status of these pathways in some cardiovascular diseases.Abbreviations AC adenylate cyclase - GPCR G protein-coupled receptor - PLC phospholipase C - GAP GTPase activating protein - PTX pertussis toxin - Ptdins(4,5)P 2 phosphatidylinositol 4,5-bisphosphate - Ins(1,4,5)P 3 inositol 1,4,5-trisphosphate - CCh carbachol  相似文献   

3.
Previously, it has been shown that the GTP-binding protein Gi2 is implicated in cellular growth [1,2] and differentiation [2,3]. In the present paper we demonstrate that this is also the case for human sarcoma cells. Six human osteosarcoma and three soft tissue sarcoma clonal cell lines were analyzed for levels of G-protein mRNA and polypeptide expression and effector enzyme (i.e., adenylate cyclase and phospholipase C) activation, which were all compared with individual growth rates. Unexpectedly, it appeared that the various strains exhibited large inter-individual variations in G-protein expression and signaling system activation. However, cell doubling time in the exponential phase of growth was inversely correlated (r = 0.71, P < 0.05) to immunodetected levels of intrinsic Gi2α. Furthermore, cells stably transfected with a retroviral (pZipNeo(SV)X) construct containing the activating or inactivating Gi2α-R179E or Gi2α-G204A point mutations consistently reduced or enhanced individual cell strain doubling time, respectively. It appeared that other parameters investigated, including cellular alkaline phosphatase and monoclonal antibody epitope binding, both being markers of the proliferating osteoblast, did not correlate with cell doubling times. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In this study, we examined whether local deferoxamine (DFO) administration can promote angiogenesis and bone repair in steroid-induced osteonecrosis of the femoral head (ONFH). Steroid-induced ONFH was induced in 65 mature male New Zealand white rabbits by methylprednisolone in combination with lipopolysaccharide. Six weeks later, the rabbits received no treatment (model group, N = 15), bilateral core decompression (CD group, N = 20) or CD in combination with local DFO administration (DFO group, N = 20). Six weeks after the surgery, vascularization in the femoral head was evaluated by ink artery infusion angiography and immunohistochemical staining for von Willebrand Factor (vWF). Bone repair was assessed by histologic analysis and micro-computed tomography (micro-CT). Immunohistochemical staining was performed to analyze the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN). Ink artery infusion angiography and microvessel analysis by immuohistochemical staining for vWF showed more blood vessels in the DFO group than other groups. The expression of HIF-1α, VEGF, BMP-2, and OCN, indicated by immunohistochemical staining, was higher in the DFO group compared with other groups. Micro-CT scanning results indicated that the DFO group had larger volume of newly formed bone than the CD group. This work indicated that local DFO administration improved angiogenesis and bone repair of early stage ONFH in rabbit model, and it may offer an efficient, economic, and simple therapy for early stage ONFH.  相似文献   

5.
This study employs regression analysis to explore population and sex differences in the pattern of age-associated bone loss, as reflected by histomorphometric variables that are measures of intracortical and endocortical bone remodeling. A comparison of an African American sample from the Washington Park Cemetery in St. Louis, Missouri, and a European American rib sample composed of cadavers, autopsies, and forensic cases from Missouri reveals the existence of complex age-associated patterns for differences in measures of intracortical remodeling and cortical area. Females from the two samples express similar bone dimensions and dynamics. The African American females appear to lose more bone than their male counterparts, but this difference is absent in the European American sample. When age-associated patterns are considered, it is in the younger cohorts that African Americans exhibit greater relative cortical area than European Americans, but this is reversed in the older ages, when the latter group manifests greater bone mass. The European American males consistently differ in the slopes and intercepts for the variables compared to the other groups, and differences are highly significant with African American females, with the former group maintaining bone mass while the latter exhibit a more rapid bone loss. Achieving larger relative cortical area due to smaller endosteal area, coupled with better bone quality due to lower intracortical porosity early in life, may be a mechanism by which African Americans, especially females, maintain adequate bone mass in older ages, which buffers them from bone loss and related fragility fractures despite higher rates of intracortical remodeling and endosteal expansion later in life. These results suggest that both genetic and environmental factors are responsible for the differences in bone remodeling and bone mass observed between these samples.  相似文献   

6.
The putative role of aluminium intake in young Bangladeshi children (1.5 to 4 years of age) with calcium-deficient rickets was evaluated in a non randomised controlled eight month trial. The effects of aluminium or stain-less-steel cooking pots on bone metabolism were assessed by measuring blood calcium, phosphorus, alkaline phosphatase, parathyroid hormone, 1,25 dihydroxy vitamin D, aminoterminal propeptide of type 1 collagen (PINP), cross-linked carboxyterminal telopeptide of type 1 collagen (ICTP), aluminium and albumin, and by analysis of wrist radiographs. In both groups, blood alkaline phosphatase, 1,25 dihydroxy vitamin D and aluminium decreased significantly, while serum albumin increased (p < 0.01). These results suggest that the nutrition may well be of major importance, whereas the role of aluminium appears to be insignificant.  相似文献   

7.
Phosphate chelators are frequently used in patients with chronic kidney disease (CKD). New iron-based chelators remain understudied and offer a promising therapeutic option for the control of bone and mineral disorders of chronic kidney disease (BMD-CKD). We assessed the effect of the phosphorus chelator, chitosan-iron III (CH-FeCl), compared to calcium carbonate (CaCO3) in BMD-CKD and the potential iron overload in uremic rats. Thirty-two animals were divided into four groups, namely the control, CKD, CKD/CH-FeCl, and CKD/CaCO3 groups. CKD was induced by adding 0.75% (4 weeks) and 0.1% (3 weeks) adenine to the diet. The chelators were administered from week 3 through week 7. The renal function, BMD-CKD markers, and histomorphometry of the femur were assessed at week 7. The CKD group showed a significant increase in creatinine (83.9 ± 18.6 vs. 41.5 ± 22.1 µmol/L; P = 0.001), phosphate (3.5 ± 0.8 vs. 2.2 ± 0.2 mmol/L; P = 0.001), fractional excretion of phosphorus (FEP) (0.71 ± 0.2 vs. 0.2 ± 0.17; P = 0.0001), and FGF23 (81.36 ± 37.16 pg/mL vs. 7.42 ± 1.96; P = 0.011) compared to the control group. There was no accumulation of serum or bone iron after the use of CH-FeCl. The use of chelators reduced the FEP (control: 0.71 ± 0.20; CKD/CH-FeCl: 0.40 ± 0.16; CKD/CaCO3 0.34 ± 0.15; P = 0.001), without changes in the serum FGF23 and parathyroid hormone levels. Histomorphometry revealed the presence of bone disease with high remodeling in the uremic animals without changes with the use of chelators. The CH-FeCl chelator was efficient in reducing the FEP without iron accumulation, thereby paving the way for the use of this class of chelators in clinical settings in the future.  相似文献   

8.

Introduction

The aim of this study was to determine the factors, including markers of bone resorption and bone formation, which determine catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis (RA).

Methods

Forty RA patients received high-resolution peripheral quantitative computed tomography (HR-pQCT) analysis of the metacarpophalangeal joints II and III of the dominantly affected hand at two sequential time points (baseline, one year follow-up). Erosion counts and scores as well as osteophyte counts and scores were recorded. Simultaneously, serum markers of bone resorption (C-terminal telopeptide of type I collagen (CTX I), tartrate-resistant acid phosphatase 5b (TRAP5b)), bone formation (bone alkaline phosphatase (BAP), osteocalcin (OC)) and calcium homeostasis (parathyroid hormone (PTH), 25-hydroxyvitamin D3 (Vit D)) were assessed. Bone biomarkers were correlated to imaging data by partial correlation adjusting for various demographic and disease-specific parameters. Additionally, imaging data were analyzed by mixed linear model regression.

Results

Partial correlation analysis showed that TRAP5b levels correlate significantly with bone erosions, whereas BAP levels correlate with osteophytes at both time points. In the mixed linear model with erosions as the dependent variable, disease duration (P <0.001) was the key determinant for these catabolic bone changes. In contrast, BAP (P = 0.001) as well as age (P = 0.018), but not disease duration (P = 0.762), were the main determinants for the anabolic changes (osteophytes) of the periarticular bone in patients with RA.

Conclusions

This study shows that structural bone changes assessed with HR-pQCT are accompanied by alterations in systemic markers of bone resorption and bone formation. Besides, it can be shown that bone erosions in RA patients depend on disease duration, whereas osteophytes are associated with age as well as serum level of BAP. Therefore, these data not only suggest that different variables are involved in formation of bone erosions and osteophytes in RA patients, but also that periarticular bone changes correlate with alterations in systemic markers of bone metabolism, pointing out BAP as an important parameter.  相似文献   

9.
Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long‐term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine‐specific phospholipase C (PC‐PLC) and levels of integrin β4, caveolin‐1 and ROS with BMSC senescence. The activity of PC‐PLC and levels of integrin β4, caveolin‐1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC‐PLC activity with D609 significantly decreased the number of senescence‐associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin β4, caveolin‐1 and ROS. The data suggest that PC‐PLC is involved in senescence of BMSCs, and its function is associated with integrin β4, caveolin‐1 and ROS. J. Cell. Biochem. 108: 519–528, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Paget's disease of bone (PDB) is the second most frequent metabolic bone disease after osteoporosis. Genetic factors play an important role in PDB, but to date PDB causing mutations were identified only in the Sequestosome 1 gene at the PDB3 locus. OPTN has been recently associated with PDB, however little is known about the effect of genetic variants in this gene in PDB pathophysiology. By sequencing OPTN in SQSTM1 non-carriers PDB patients we found 16 SNPs in regulatory, coding and non-coding regions. One of those was found to be associated with PDB in our cohort - rs2234968. Our results show that rs2238968 effect may be explained by a change in OPTN splicing that give rise to a predicted truncated protein. We also performed functional studies on the variants located in OPTN promoter – rs3829923 and the rare variant ? 9906 – to investigate putative regulators of OPTN. Our results show that OPTN expression seems to be regulated by SP1, RXR, E47, and the E2F family. In conclusion, our work suggests a potential pathophysiological role of SNPs in OPTN, giving a new perspective about the regulatory mechanisms of this gene. Ultimately we discovered a new variant associated with PDB in OPTN, reinforcing the relevance of this gene for the development of this bone disease.  相似文献   

11.
In normal rats treated with 1,25(OH)2D3 or 24,25(OH)2D3, serum Ca2+, ALP, PRL and GH are significantly altered. In order to study the primary effect of vitamin D3 analogues on target organ function, rat UMR 106 osteosarcoma and GH3 pituitary adenoma cells in monolayer culture were exposed accordingly.Surprisingly, prolonged exposure of these cell lines to physiological levels of either 1,25(OH)2D3 or 24,25(OH)2D3 did not significantly affect the secretory parameters (ALP, PRL or GH) tested. However, 1,25(OH)2D3 exposure significantly reduced PTH- and Gpp(NH)p-elicited AC as well as Gpp(NH)p-stimulated PLC activities in the UMR 106 cells. These changes were accompanied by an increase and decrease in the membrane contents of the G-protein subunits G36 and Gq/11, respectively. In contrast, 24,25(OH)2D3 remained without significant biological effect on these signalling systems despite concomitantly augmented levels of G36. TRH- and Gpp(NH)p-elicited PLC activities in the GH3 cells were significantly reduced by 1,25(OH)2D3 with a concurrent reduction in cellular amounts of Gq/11, however, 24,25(OH)2D3 did not significantly alter any signalling systems nor G-proteins analyzed.It is concluded that the osteoblastic and pituitary cell secretion of ALP, PRL and GH remain unaffected by the presence of 1,25(OH)2D3 and 24,25(OH)2D3, despite distinct alterations in components of G-protein mediated signalling pathways. Hence, other factors like ambient Ca2+ may be responsible for the perturbed secretory patterns of ALP and PRL seen in vitamin D3 treated rats.Abbreviations AC adenylate cyclase - ALP alkaline phosphatase - BGP osteocalcin - BSA bovine serum albumin - DA dopamine - DAG diacylglycerol - GH growth hormone - GHRH growth hormone releasing hormone - Gpp(NH)p guanosine 5-[-imido]triphosphate - G-protein guanine nucleotide-binding regulatory protein - Gs etc. Gs protein -subunit - IP3 inositol 1,4,5 trisphosphate - OAF osteoclast activating factor - PGE2 prostaglandin E2 - PKA & PKC protein kinase A & C - PLC phospholipase C - PRL prolactin - PTH parathyroid hormone - SRIF somatostatin - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide - 25(OH)D3 25 hydroxy vitamin D3 - 1,25(OH)2D3 1·25 dihydroxy vitamin D3 - 24,25(OH)2D3 24,25 dihydroxy vitamin D3  相似文献   

12.
doi: 10.1111/j.1741‐2358.2011.00525.x Effect of electromagnetic field on bone regeneration around dental implants after immediate placement in the dog mandible: a pilot study Background: Accelerating bone healing around dental implants can reduce the long‐term period between the insertion of implants and functional rehabilitation. Objective: This in vivo study evaluated the effect of a constant electromagnetic field (CEF) on bone healing around dental implants in dogs. Materials and methods: Eight dental implants were placed immediately after extraction of the first pre‐molar and molar teeth on the mandible of two male dogs and divided into experimental (CEF) and control groups. A CEF at magnetic intensity of 0.8 mT with a pulse width of 25 μs and frequency of 1.5 MHz was applied on the implants for 20 min per day for 2 weeks. Result and conclusion: After qualitative histological analysis, a small quantity of newly formed bone was observed in the gap between the implant surface and alveolar bone in both groups.  相似文献   

13.
This experiment examined the long-term effects of offering diets containing low levels of dietary phosphorus (P) on dairy cow health, fertility and bone composition, and the effect of dietary P level on nutrient utilisation. One hundred winter-calving Holstein-Friesian dairy cows were offered diets containing either 'high' or 'low' levels of dietary P over a 4-year period. Rations offered during the winter included grass silage, maize silage (70 : 30 dry matter (DM) basis, approximately) and concentrates (10.0 to 12.0 kg/cow per day). During the summer periods in years 1 and 2, half of the cows grazed both day and night, while the remaining cows grazed by day, and were housed by night and offered grass silage. During years 3 and 4, all cows grazed both day and night during the summer period. Concentrate feed levels during the summer periods were 3.0 to 4.0 kg/cow per day. Different dietary P levels were achieved by offering concentrates containing either high or low P levels during the winter period (approximately 7.0 or 4.4 g P/kg DM, respectively) and during the summer period (approximately 6.8 or 3.6 g P/kg DM, respectively). Total ration P levels averaged 4.9 and 3.6 g P/kg DM for the high and low P winter diets, respectively, and 4.2 and 3.6 g P/kg DM for the high and low P summer diets, respectively. A total of 95, 70, 50 and 22 cows completed each of lactations from 1 to 4, respectively. Neither the incidence of lameness or mastitis, or milk somatic cell count, were affected by dietary P level (P > 0.05), while none of the fertility parameters recorded in any of lactations from 1 to 4 was affected by the dietary P level (P > 0.05). Dietary P level had no effect on the specific gravity, ash or calcium content of rib cortical bone cores (n = 78 cows), while the P content of cortical bone (g/kg fresh, g/kg DM and mg/ml fresh bone) was lower with cows offered low P diets (P < 0.05). Dietary P level had no significant effect on the digestibility of either the DM, nitrogen, energy or acid detergent fibre fraction of the diet (P > 0.05), while faecal P excretions were reduced by a mean of 27 g/cow per day with cows offered the low P diets during the winter period. The results of this study indicate that dietary P levels can be reduced to proportionately 0.8 (approximately) of current UK feeding standards (Agricultural and Food Research Council, 1991), with no detrimental effect on dairy cow health or fertility, while having only minor effects on bone composition.  相似文献   

14.

Introduction

Patients with chronic inflammatory diseases have increased bone loss and bone fragility and are at increased risk of fracture. Although anti-resorptive drugs are effective in blocking inflammation-induced bone loss, they are less effective at rebuilding bone. We have previously shown that treatment with sclerostin antibody (Scl-AbI) builds bone and can prevent or restore bone loss in a murine model of inflammatory bowel disease. In this study, we tested the effect of Scl-AbI in a murine model of rheumatoid arthritis (the collagen-induced arthritis model, CIA). We hypothesised that sclerostin blockade can protect and restore bone both locally and systemically without affecting progression of inflammation.

Methods

CIA was induced in male DBA/1 mice, which were treated with either PBS or Scl-AbI (10 mg/kg, weekly) prophylactically for 55 days or therapeutically for 21 days (starting 14 days post onset of arthritis). Systemic inflammation was assessed by measuring the serum concentration of anti-CII IgG1, IgG2a and IgG2b by ELISA. Changes in bone mass and structure, either at sites remote from the joints or at periarticular sites, were measured using DEXA and microCT. Bone focal erosion was assessed in microCT scans of ankle and knee joints.

Results

Circulating anti-CII immunoglobulins were significantly elevated in mice with CIA and there were no significant differences in the levels of anti-CII immunoglobulins in mice treated with PBS or Scl-ABI. Prophylactic Scl-AbI treatment prevented the decrease in whole body bone mineral density (BMD) and in the bone volume fraction at axial (vertebral body) and appendicular (tibial proximal metaphysis trabecular and mid-diaphysis cortical bone) sites seen in PBS-treated CIA mice, but did not prevent the formation of focal bone erosions on the periarticular bone in the knee and ankle joints. In the therapeutic study, Scl-AbI restored BMD and bone volume fraction at all assessed sites but was unable to repair focal erosions.

Conclusions

Sclerostin blockade prevented or reversed the decrease in axial and appendicular bone mass in the murine model of rheumatoid arthritis, but did not affect systemic inflammation and was unable to prevent or repair local focal erosion.  相似文献   

15.
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号