首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The replication of genomic DNA is strictly regulated to occur only once per cell cycle. This regulation centers on the temporal restriction of replication licensing factor activity. Two distinct ubiquitin ligase (E3) complexes, CUL4/DDB1 and SCF(Skp2), have been reported to target the replication licensing factor Cdt1 for ubiquitin-mediated proteolysis. However, it is unclear to what extent these two distinct Cdt1 degradation pathways are conserved. Here, we show that Caenorhabditis elegans DDB-1 is required for the degradation of CDT-1 during S phase. DDB-1 interacts specifically with CUL-4 but not with other C. elegans cullins. A ddb-1 null mutant exhibits extensive DNA rereplication in postembryonic BLAST cells, similar to what is observed in cul-4(RNAi) larvae. DDB-1 physically associates with CDT-1, suggesting that CDT-1 is a direct substrate of the CUL-4/DDB-1 E3 complex. In contrast, a deletion mutant of the C. elegans Skp2 ortholog, skpt-1, appears overtly wild type with the exception of an impenetrant gonad migration defect. There is no appreciable role for SKPT-1 in the degradation of CDT-1 during S phase, even in a sensitized ddb-1 mutant background. We propose that the CUL-4/DDB-1 ubiquitin ligase is the principal E3 for regulating the extent of DNA replication in C. elegans.  相似文献   

3.
Mutations in either the Drosophila melanogaster pelota or pelo gene or the Saccharomyces cerevisiae homologous gene, DOM34, cause defects of spermatogenesis and oogenesis in Drosophila, and delay of growth and failure of sporulation in yeast. These phenotypes suggest that pelota is required for normal progression of the mitotic and meiotic cell cycle. To determine the role of the pelota in mouse development and progression of cell cycle, we have established a targeted disruption of the mouse PELO: Heterozygous animals are variable and fertile. Genotyping of the progeny of heterozygous intercrosses shows the absence of Pelo(-/-) pups and suggests an embryo-lethal phenotype. Histological analyses reveal that the homozygous Pelo deficient embryos fail to develop past day 7.5 of embryogenesis (E7.5). The failure of mitotic active inner cell mass of the Pelo(-/-) blastocysts to expand in growth after 4 days in culture and the survival of mitotic inactive trophoplast indicate that the lethality of Pelo-null embryos is due to defects in cell proliferation. Analysis of the cellular DNA content reveals the significant increase of aneuploid cells in Pelo(-/-) embryos at E7.5. Therefore, the percent increase of aneuploid cells at E7.5 may be directly responsible for the arrested development and suggests that Pelo is required for the maintenance of genomic stability.  相似文献   

4.
Cul-4A, which encodes a member of the cullin family subunit of ubiquitin-protein ligases, is expressed at abnormally high levels in many tumor cells. CUL-4A can physically associate with the damaged DNA-binding protein (DDB), which is composed of two subunits, p125 and p48. DDB binds specifically to UV-damaged DNA and is believed to play a role in DNA repair. We report here that CUL-4A stimulates degradation of p48 through the ubiquitin-proteasome pathway, resulting in an overall decrease in UV-damaged DNA binding activity. The R273H mutant of p48 identified from a xeroderma pigmentosium (group E) patient is not subjected to CUL-4A-mediated proteolysis, consistent with its inability to bind CUL-4A. p125 is also an unstable protein, and its ubiquitination is stimulated by CUL-4A. However, the abundance of p125 is not dramatically altered by Cul-4A overexpression. UV irradiation inhibits p125 degradation, which is temporally coupled to the UV-induced translocation of p125 from the cytoplasm into the nucleus. CUL-4A is localized primarily in the cytoplasm. These findings identify DDB subunits as the first substrates of the CUL-4A ubiquitination machinery and suggest that abnormal expression of Cul-4A results in reduced p48 levels, thus impairing the ability of DDB in lesion recognition and DNA repair in tumor cells.  相似文献   

5.
Previous studies have suggested that the vav protooncogene plays an important role in hematopoiesis. To study this further, we have ablated the vav protooncogene by homologous recombination in embryonic stem (ES) cells. Homozygous vav (-/-) ES clones differentiate normally in culture and generate cells of erythroid, myeloid and mast cell lineages. Mice heterozygous for the targeted vav allele do not display any obvious abnormalities. However, homozygous embryos die very early during development. Crosses of vav (+/-) heterozygous mice yield apparently normal vav (-/-) E3.5 embryos but not post-implantation embryos (> or = E7.5). Furthermore, homozygous vav (-/-) blastocysts do not hatch in vitro. These results indicate that vav is essential for an early developmental step(s) that precedes the onset of hematopoiesis. Consistent with the phenotypic analysis of vav (-/-) embryos, we have identified Vav immunoreactivity in the extra-embryonic trophoblastic cell layer but not in the inner embryonic cell mass of E3.5 preimplantation embryos or in the egg cylinder of E6.5 and E7.5 post-implantation embryos. These results suggest that the vav gene is essential for normal trophoblast development and for implantation of the developing embryo.  相似文献   

6.
The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.  相似文献   

7.
Tid1 is the mammalian counterpart of the Drosophila tumor suppressor Tid56 and is also a DnaJ protein containing a conserved J domain through which it interacts with the heat shock protein 70 (Hsp70) family of chaperone proteins. We generated a Tid1 conditional mutation in mice, and the subsequent global removal of the Tid1 protein was achieved by crossing these conditional knockout mice with general deletor mice. No Tid1(-/-) embryos were detected as early as embryonic day 7.5 (E7.5). Nonetheless, Tid1-deficient blastocysts were viable, hatched, formed an inner cell mass and trophectoderm, and implanted (E4.5), suggesting that the homozygous mutant embryos die between E4.5 and E7.5. To assess the function of Tid1 in embryonic cells, mouse embryonic fibroblasts with the homologous Tid1 floxed allele were produced. Tid1 removal in these cells led to massive cell death. The death of Tid1-deficient cells could be rescued by ectopic expression of wild-type Tid1 but not by expression of the Tid1 protein that had a mutated J domain and was thus incapable of binding to Hsp70. We propose that Tid1 is critical for early mammalian development, most likely for its function in sustaining embryonic-cell survival, which requires its association with Hsp70.  相似文献   

8.
9.
Progesterone (P(4)), 17beta- estradiol (E(2)) and androstenedione (A(4)) plasma concentrations were correlated with palpated corpora lutea (CL), recovered embryos and viable embryos in 13 Nelore cows induced to superovulate with FSH, starting on Day 10 of the estrous cycle. Administration of FSH increased the number of ovulations and recovered embryos. Plasma P(4), E(2) and A(4) levels on Day 0 and of P(4) on Days 10 and 11 of the cycle were not correlated with the superovulatory response. Determination of CL by palpation per rectum was used to estimate the number of recovered embryos. Plasma P(4) levels higher than 1 ng/ml on the induced estrus day (Day 14) had an adverse effect on the embryo viability rate. Plasma E(2) concentrations on Day 14 were positively correlated with the number of viable embryos collected, a correlation that has not been previously reported. The present data indicate that plasma P(4) and E(2) concentrations in FSH-PGF2alpha-treated Nelore cows are useful for the identification of 2 different populations of Nelore donors and are correlated with superovulatory response and, particularly, with the number of viable embryos.  相似文献   

10.
The cullin-containing ubiquitin-protein isopeptide ligases (E3s) play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skp1 and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated IkappaBalpha by SCF(beta-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion.  相似文献   

11.
Cytokeratins 8 and 19 in the mouse placental development   总被引:9,自引:0,他引:9  
To investigate the expression and biological roles of cytokeratin 19 (K19) in development and in adult tissues, we inactivated the mouse K19 gene (Krt1-19) by inserting a bacterial beta-galactosidase gene (lacZ) by homologous recombination in embryonic stem cells, and established germ line mutant mice. Both heterozygous and homozygous mutant mice were viable, fertile, and appeared normal. By 7.5-8.0 days post coitum (dpc), heterozygous mutant embryos expressed lacZ in the notochordal plate and hindgut diverticulum, reflecting the fact that the notochord and the gut endoderm are derived from the axial mesoderm-originated cells. In the adult mutant, lacZ was expressed mainly in epithelial tissues. To investigate the possible functional cooperation and synergy between K19 and K8, we then constructed compound homozygous mutants, whose embryos died approximately 10 dpc. The lethality resulted from defects in the placenta where both K19 and K8 are normally expressed. As early as 9. 5 dpc, the compound mutant placenta had an excessive number of giant trophoblasts, but lacked proper labyrinthine trophoblast or spongiotrophoblast development, which apparently caused flooding of the maternal blood into the embryonic placenta. These results indicate that K19 and K8 cooperate in ensuring the normal development of placental tissues.  相似文献   

12.
Adrenomedullin (AM) is a multifunctional peptide vasodilator that is essential for life. To date, numerous in vitro studies have suggested that AM can mediate its biological effects through at least three different receptors. To determine the in vivo importance of the most likely candidate receptor, calcitonin receptor-like receptor, a gene-targeted knockout model of the gene was generated. Mice heterozygous for the targeted Calcrl allele appear normal, survive to adulthood, and reproduce. However, heterozygote matings fail to produce viable Calcrl-/- pups, demonstrating that Calcrl is essential for survival. Timed matings confirmed that Calcrl-/- embryos die between embryonic day 13.5 (E13.5) and E14.5 of gestation. The Calcrl-/- embryos exhibit extreme hydrops fetalis and cardiovascular defects, including thin vascular smooth muscle walls and small, disorganized hearts remarkably similar to the previously characterized AM-/- phenotype. In vivo assays of cellular proliferation and apoptosis in the hearts and vasculature of Calcrl-/- and AM-/- embryos support the concept that AM signaling is a crucial mediator of cardiovascular development. The Calcrl gene targeted mice provide the first in vivo genetic evidence that CLR functions as an AM receptor during embryonic development.  相似文献   

13.
The ter (teratoma) mutation causes primordial germ cell (PGC) deficiency in ter/ter embryos at 9.5–12.5 days of post-coitum (dpc) in mouse strains 129/Sv- ter and LTXBJ- ter . To study the effects of the ter mutation on the PGC development more precisely, we examined the PGC number and distribution in 7.5–12.5 dpc embryo of ter congenic C57BL/6J- ter strain using their complete serial sections. The ter genotypes of embryos were identified by the polymerase chain reaction (PCR) polymorphisms of the microsatellite DNA of the Grl -1 locus mapped near the ter locus. Results showed that: (i) the PGC number in ter/ter embryos was similar to those of + / ter and + / + embryos at 7.5 dpc, and did not increase at 8.0–12.5 dpc, although those of normal littermates did usually; (ii) the PGC migration to genital ridges was never affected in all embryos; and (iii) the ter genotype difference in the PGC numbers was not recognized between + / ter and + / + embryos. We concluded that the ter mutation does not affect the PGC appearance around 7.5 dpc, but first causes PGC deficiency around 8.0 dpc at the beginning of their migration and proliferation, suggesting that the normal function of the ter gene may be essential for the proliferation or survival mechanisms of PGC.  相似文献   

14.
NEDD8/Rub1 is a ubiquitin (Ub)-like molecule that covalently ligates to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to target all cullin (Cul) family proteins. The latter are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes, which play critical roles in Ub-mediated proteolysis. To determine the role of the NEDD8 system in mammals, we generated mice deficient in Uba3 gene that encodes a catalytic subunit of NEDD8-activating enzyme. Uba3(-/-) mice died in utero at the periimplantation stage. Mutant embryos showed selective apoptosis of the inner cell mass but not of trophoblastic cells. However, the mutant trophoblastic cells could not enter the S phase of the endoreduplication cycle. This cell cycle arrest was accompanied with aberrant expression of cyclin E and p57(Kip2). These results suggested that the NEDD8 system is essential for both mitotic and the endoreduplicative cell cycle progression. beta-Catenin, a mediator of the Wnt/wingless signaling pathway, which degrades continuously in the cytoplasm through SCF Ub ligase, was also accumulated in the Uba3(-/-) cytoplasm and nucleus. Thus, the NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression and morphogenesis, possibly through the function of the Cul family proteins.  相似文献   

15.
alpha-Lipoic acid (LA) is a cofactor for mitochondrial alpha-ketoacid dehydrogenase complexes and is one of the most potent, natural antioxidants. Reduction of oxidative stress by LA supplementation has been demonstrated in patients with diabetic neuropathy and in animal models. To determine how normal development or pathological conditions are affected by genetic alterations in the ability of mammalian cells to synthesize LA and whether dietary LA can circumvent its endogenous absence, we have generated mice deficient in lipoic acid synthase (Lias). Mice heterozygous for disruption of the Lias gene develop normally, and their plasma levels of thiobarbituric acid-reactive substances do not differ from those of wild-type mice. However, the heterozygotes have significantly reduced erythrocyte glutathione levels, indicating that their endogenous antioxidant capacity is lower than those of wild-type mice. Homozygous embryos lacking Lias appear healthy at the blastocyst stage, but their development is retarded globally by 7.5 days postcoitum (dpc), and all the null embryos die before 9.5 dpc. Supplementing the diet of heterozygous mothers with LA (1.65 g/kg of body weight) during pregnancy fails to prevent the prenatal deaths of homozygous embryos. Thus, endogenous LA synthesis is essential for developmental survival and cannot be replaced by LA in maternal tissues and blood.  相似文献   

16.
17.
The mammalian target of rapamycin (mTOR) is a key component of a signaling pathway which integrates inputs from nutrients and growth factors to regulate cell growth. Recent studies demonstrated that mice harboring an ethylnitrosourea-induced mutation in the gene encoding mTOR die at embryonic day 12.5 (E12.5). However, others have shown that the treatment of E4.5 blastocysts with rapamycin blocks trophoblast outgrowth, suggesting that the absence of mTOR should lead to embryonic lethality at an earlier stage. To resolve this discrepancy, we set out to disrupt the mTOR gene and analyze the outcome in both heterozygous and homozygous settings. Heterozygous mTOR (mTOR(+/-)) mice do not display any overt phenotype, although mouse embryonic fibroblasts derived from these mice show a 50% reduction in mTOR protein levels and phosphorylation of S6 kinase 1 T389, a site whose phosphorylation is directly mediated by mTOR. However, S6 phosphorylation, raptor levels, cell size, and cell cycle transit times are not diminished in these cells. In contrast to the situation in mTOR(+/-) mice, embryonic development of homozygous mTOR(-/-) mice appears to be arrested at E5.5; such embryos are severely runted and display an aberrant developmental phenotype. The ability of these embryos to implant corresponds to a limited level of trophoblast outgrowth in vitro, reflecting a maternal mRNA contribution, which has been shown to persist during preimplantation development. Moreover, mTOR(-/-) embryos display a lesion in inner cell mass proliferation, consistent with the inability to establish embryonic stem cells from mTOR(-/-) embryos.  相似文献   

18.
19.
The mechanisms that ensure coupling between meiotic cell cycle progression and subsequent developmental events, including specification of embryonic axes, are poorly understood. Here, we establish that zyg-11 and the cullin cul-2 promote the metaphase-to-anaphase transition and M phase exit at meiosis II in Caenorhabditis elegans. Our results indicate that ZYG-11 acts with a CUL-2-based E3 ligase that is essential at meiosis II and that functions redundantly with the anaphase-promoting complex/cyclosome at meiosis I. Our data also indicate that delayed M phase exit in zyg-11(RNAi) embryos is due to accumulation of the B type cyclin CYB-3. We demonstrate that PAR proteins and P granules become polarized in an inverted manner during the meiosis II delay resulting from zyg-11 or cul-2 inactivation, and that zyg-11 and cul-2 can regulate polarity establishment independently of a role in cell cycle progression. Furthermore, we find that microtubules appear dispensable for ectopic polarity during the meiosis II delay in zyg-11(RNAi) embryos, as well as for AP polarity during the first mitotic cell cycle in wild-type embryos. Our findings suggest a model in which a CUL-2-based E3 ligase promotes cell cycle progression and prevents polarity establishment during meiosis II, and in which the centrosome acts as a cue to polarize the embryo along the AP axis after exit from the meiotic cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号