首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete mitochondrial genomes of two reptiles, the common iguana (Iguana iguana) and the caiman (Caiman crocodylus), were sequenced in order to investigate phylogenetic questions of tetrapod evolution. The addition of the two species allows analysis of reptilian relationships using data sets other than those including only fast-evolving species. The crocodilian mitochondrial genomes seem to have evolved generally at a higher rate than those of other vertebrates. Phylogenetic analyses of 2889 amino-acid sites from 35 mitochondrial genomes supported the bird-crocodile relationship, lending no support to the Haematotherma hypothesis (with birds and mammals representing sister groups). The analyses corroborated the view that turtles are at the base of the bird-crocodile branch. This position of the turtles makes Diapsida paraphyletic. The origin of the squamates was estimated at 294 million years (Myr) ago and that of the turtles at 278 Myr ago. Phylogenetic analysis of mammalian relationships using the additional outgroups corroborated the Marsupionta hypothesis, which joins the monotremes and the marsupials to the exclusion of the eutherians.  相似文献   

2.
The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.  相似文献   

3.
Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution.  相似文献   

4.
MOTIVATION: In spite of a well-known fact that genome rearrangements are supposed to be viewed in the light of the evolutionary relationships within and between the species involved, no formal underlying framework based on the evolutionary considerations for treating the questions arising in the area has been proposed. If such an underlying framework is provided, all the basic questions in the area can be posed in a biologically more appropriate and useful form: e.g., the similarity between two genomes can then be computed via the nearest ancestor, rather than 'directly', ignoring the evolutionary connections. RESULTS: We outline an evolution-based general framework for answering questions related to the multiple genome rearrangement. In the proposed model, the evolutionary genome graph (EG-graph) encapsulates an evolutionary history of a genome family. For a set of all EG-graphs, we introduce a family of similarity measures, each defined via a fixed set of genome transformations. Given a set of genomes and restricting ourselves to the transpositions, an algorithm for constructing an EG-graph is presented. We also present the experimental results in the form of an EG-graph for a set of concrete genomes (for several species). This EG-graph turns out to be very close to the corresponding known phylogenetic tree.  相似文献   

5.
B R Lu  K B Jensen  B Salomon 《Génome》1993,36(6):1157-1168
To investigate genomic relationships of Elymus tschimganicus (Drobov) Tzvelev (2n = 6x = 42, S1S2Y genomes) and E. glaucissimus (M. Pop.) Tzvelev (2n = 6x = 42, S1S2Y genomes), interspecific hybridizations of the two target species were carried out with 27 other Elymus species containing the SH, SY, SYH, SYP, SYW, and SH1H2 genomes, respectively, collected from different geographic regions. Chromosome pairing behavior was analyzed at metaphase I in 27 hybrids representing 23 hybrid combinations, and overall genomic relationships of the two target species with the other Elymus taxa were estimated. The study concluded that (i) interspecific hybridization was principally easy to perform between the Elymus species, but no general pattern of crossability was obtained, and all hybrids were completely sterile, (ii) the two species have a similar meiotic pattern in their hybrids with the other Elymus species, and (iii) species containing the SY, SYP, and SYH genomes have a generally higher level of genomic homology to the target species than those possessing the SH genomes, and the South American hexaploid with the SH1H2 genomes has the lowest level of genomic homology to the two target taxa.  相似文献   

6.
Understanding the classification and biosystematics of species in Triticeae Dumort., an economically important tribe in the grass family (Poaceae), is not an easy task, particularly for some perennial species. Does genomic analysis facilitate the understanding of evolutionary relationships of these Triticeae species? We reviewed literature published after 1984 to address questions concerning: (1) genome relationships among the monogenomic diploid species; (2) progenitors of the unknown Y genome in Elymus polyploids, X genome in Thinopyrum intermedium, and Xm genome in Leymus; and (3) genome constitutions of some perennial Triticeae species that were unknown or misidentified. A majority of publications have substantiated the close affinity of the Eb and Ee genomes in Th. bessarabicumand Th. elongatum, supporting the use of a common basic genome symbol. The E genome is close to the St genome of Pseudoroegneria and ABD genomes ofTriticum/Aegilops complex, providing an explanation for transferring genes from the E to ABD genomes with relative ease. Although the solid proof is still lacking, theW, P, and especially Xp genomes are possible origins for the Y genome of polyploid Elymus. The absence of the E genome and the allopolyploidy nature of tetraploidLeymus species have been unequivocally confirmed by both cytogenetic and molecular studies. However, the donor of the Xm genomes of Leymus was only speculated to be related to the P genome of Agropyron and F genome of Eremopyrum. Intermediate wheatgrass (Th. intermedium) has been extensively studied. The presence of the St (as the previously designated X) genome in Th. intermedium is now unequivocal. Its two more closely related E1 and E2 genomes are shown to be older versions of the E genome rather than the current Eb and Ee genomes. Speciation of Th. intermedium was similar to that of Triticum aestivum, in which the Js/Es(like B) genomes had the greatest differentiation from the current J (Eb) genome owning to repetitive sequences of the V genome, whereas its St (like D) had the least differentiation from the current St genome. Species with unknown or misidentified genomes have been correctly designated, including those with the ESt, StP, StPY,StWY, EStP, HW, StYHW, and NsXm genomes. Some of those species have been transferred to and renamed in appropriate genera.  相似文献   

7.
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~ 1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.  相似文献   

8.
Molecular and morphological data regarding the relationships among the three classes of Rotifera (Bdelloidea, Seisonidea, and Monogononta) and the phylum Acanthocephala are inconclusive. In particular, Bdelloidea lacks molecular-based phylogenetic appraisal. I obtained coding sequences from the mitochondrial genomes of twelve bdelloids and two monogononts to explore the molecular phylogeny of Bdelloidea and provide insight into the relationships among lineages of Syndermata (Rotifera + Acanthocephala). With additional sequences taken from previously published mitochondrial genomes, the total dataset included nine species of bdelloids, three species of monogononts, and two species of acanthocephalans. A supermatrix of these 10-12 mitochondrial proteins consistently recovered a bdelloid phylogeny that questions the validity of a generally accepted classification scheme despite different methods of inference and various parameter adjustments. Specifically, results showed that neither the family Philodinidae nor the order Philodinida are monophyletic as currently defined. The application of a similar analytical strategy to assess syndermate relationships recovered either a tree with Bdelloidea and Monogononta as sister taxa (Eurotatoria) or Bdelloidea and Acanthocephala as sister taxa (Lemniscea). Both outgroup choice and method of inference affected the topological outcome emphasizing the need for sequences from more closely related outgroups and more sophisticated methods of analysis that can account for the complexity of the data.  相似文献   

9.
To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another 11 species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.  相似文献   

10.
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.  相似文献   

11.
Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.  相似文献   

12.

Background  

Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops.  相似文献   

13.
Animal mitochondrial genomes   总被引:63,自引:1,他引:63       下载免费PDF全文
  相似文献   

14.
Wang S  Li X  Wang K  Wang X  Li S  Zhang Y  Guo G  Zeller FJ  Hsam SL  Yan Y 《Génome》2011,54(4):273-284
Phylogenetic relationships between the C, U, N, and M genomes of Aegilops species and the genomes of common wheat and other related species were investigated by using three types of low-molecular-weight glutenin subunit (LMW-GS) genes at Glu-3 loci. A total of 20 LMW-GS genes from Aegilops and Triticum species were isolated, including 11 LMW-m type and 9 LMW-i type genes. Particularly, four LMW-m type and three LMW-i type subunits encoded by the genes on the C, N, and U genomes possessed an extra cysteine residue at conserved positions, which could provide useful information for understanding phylogenetic relationships among Aegilops and Triticum genomes. Phylogenetic trees constructed by using either LMW-i or the combination of LMW-m and LMW-s, as well as analysis of all the three types of LMW-GS genes together, demonstrated that the C and U genomes were closely related to the A genome, whereas the N and M genomes were closely related to the D genome. Our results support previous findings that the A genome was derived from Triticum uratu, the B genome was from Aegilops speltoides, and the D genome was from Aegilops tauschii. In addition, phylogenetic relationships among different genomes analysed in this study support the concept that Aegilops is not monophyletic.  相似文献   

15.
The open sharing of genomic data provides an incredibly rich resource for the study of bacterial evolution and function and even anthropogenic activities such as the widespread use of antimicrobials. However, these data consist of genomes assembled with different tools and levels of quality checking, and of large volumes of completely unprocessed raw sequence data. In both cases, considerable computational effort is required before biological questions can be addressed. Here, we assembled and characterised 661,405 bacterial genomes retrieved from the European Nucleotide Archive (ENA) in November of 2018 using a uniform standardised approach. Of these, 311,006 did not previously have an assembly. We produced a searchable COmpact Bit-sliced Signature (COBS) index, facilitating the easy interrogation of the entire dataset for a specific sequence (e.g., gene, mutation, or plasmid). Additional MinHash and pp-sketch indices support genome-wide comparisons and estimations of genomic distance. Combined, this resource will allow data to be easily subset and searched, phylogenetic relationships between genomes to be quickly elucidated, and hypotheses rapidly generated and tested. We believe that this combination of uniform processing and variety of search/filter functionalities will make this a resource of very wide utility. In terms of diversity within the data, a breakdown of the 639,981 high-quality genomes emphasised the uneven species composition of the ENA/public databases, with just 20 of the total 2,336 species making up 90% of the genomes. The overrepresented species tend to be acute/common human pathogens, aligning with research priorities at different levels from individual interests to funding bodies and national and global public health agencies.

This study presents the first uniformly assembled, comprehensively described and searchable dataset of 661,405 bacterial genomes; this resource will empower more scientists to harness the multitude of data in public sequencing archives, but also reveals the biased composition of these archives, with 90% of the data originating from just 20 species.  相似文献   

16.
S Ge  T Sang  B R Lu  D Y Hong 《Génome》2001,44(6):1136-1142
The rice genus (Oryza L.) consists of 24 species with 10 recognized genome types. With the realization of many useful genes in species of wild rice, continuous efforts have been made to understand their genomic composition and relationships. However, the identification of rice genomes has often been difficult owing to complex morphological variation and formation of allotetraploids. Here we propose a rapid and reliable method for identifying rice genomes based on the restriction sites of PCR-amplified Adh genes. The experimental procedure was as follows: (i) amplify a portion of Adh1 and Adh2 genes with the locus-specific PCR primers; (ii) digest PCR products with restriction enzymes that distinguish different genomes; and (iii) run the digested products on 1.4% agarose gel, and photograph. Using various combinations of restriction digestion of the two Adh genes, all of the rice genomes can be identified.  相似文献   

17.
Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny   总被引:2,自引:0,他引:2  
Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members. The hypothesis that the giant panda was the first species to diverge among ursids is definitively confirmed and the precise branching order within the Ursus genus is clarified for the first time. Moreover, our analyses indicate that the American and the Asiatic black bears do not cluster as sister taxa, as had been previously hypothesised. Sun and sloth bears clearly appear as the most basal ursine species but uncertainties about their exact relationships remain. Since our larger dataset did not enable us to clarify this last question, identifying rare genomic changes in bear genomes could be a promising solution for further studies.  相似文献   

18.
The successful production of a large number of artificial hybrids betweenDahlia species based on x = 16 has allowed a detailed study of their genomic relationships. Chromosome behaviour in these artificial hybrids was extremely similar to that observed in parental species suggesting that there is a considerable degree of homology between the genomes of theseDahlia species. Using GISH it can be demonstrated that in these hybrids bivalent formation involved pairing only between parental genomes. The ability of GISH to differentiate between parental genomes in artificial hybrids was variable, indicating that molecular divergence of highly repeated sequences has accompanied the evolution of these species. However, the extent of chromosome pairing and chiasma formation in the hybrids does not reflect the differences that can be detected by GISH. Seyeral of the new hybrid combinations have resulted in horticulturally interesting plants.  相似文献   

19.
Our understanding of the phylogenetic relationships among tick lineages has been limited by the lack of resolution provided by the most commonly used phylogenetic markers. Mitochondrial genomes are increasingly used to address controversial phylogenetic relationships. To date, the complete mitochondrial genomes of eleven tick species have been sequenced; however, only three of these species are metastriate ticks, the most speciose lineage of ticks. In this study, we present the nucleotide sequences of the complete mitochondrial genomes of five more species of metastriate ticks: Amblyomma elaphense, Amblyomma fimbriatum, Amblyomma sphenodonti, Bothriocroton concolor and Bothriocroton undatum. We use complete mitochondrial genome sequences to address the phylogenetic placement of two morphologically 'primitive' species -Am. elaphense and Am. sphenodonti - with respect to the genus Amblyomma. Our analysis of these five mitochondrial genomes with the other eleven tick mitochondrial genomes, as well as analysis of nuclear rRNA genes, provides strong evidence that the genus Amblyomma is polyphyletic with the inclusion of Am. sphenodonti and Am. elaphense. A new genus or two new genera may be required to describe Am. sphenodonti and Am. elaphense. It is also possible that these two species are sisters to two established genera, Bothriocroton in the case of Am. sphenodonti, and Haemaphysalis in the case of Am. elaphense. However, other arrangements of these taxa cannot be excluded with the current data. Thus, while Am. sphenodonti and Am. elaphense do not belong in the genus Amblyomma, the phylogenetic placement of these two species cannot be resolved without more data from metastriate ticks, either greater sampling of mitochondrial genomes, or a large data set of nuclear genes.  相似文献   

20.
Our understanding of the evolutionary history of primates is undergoing continual revision due to ongoing genome sequencing efforts. Bolstered by growing fossil evidence, these data have led to increased acceptance of once controversial hypotheses regarding phylogenetic relationships, hybridization and introgression, and the biogeographical history of primate groups. Among these findings is a pattern of recent introgression between species within all major primate groups examined to date, though little is known about introgression deeper in time. To address this and other phylogenetic questions, here, we present new reference genome assemblies for 3 Old World monkey (OWM) species: Colobus angolensis ssp. palliatus (the black and white colobus), Macaca nemestrina (southern pig-tailed macaque), and Mandrillus leucophaeus (the drill). We combine these data with 23 additional primate genomes to estimate both the species tree and individual gene trees using thousands of loci. While our species tree is largely consistent with previous phylogenetic hypotheses, the gene trees reveal high levels of genealogical discordance associated with multiple primate radiations. We use strongly asymmetric patterns of gene tree discordance around specific branches to identify multiple instances of introgression between ancestral primate lineages. In addition, we exploit recent fossil evidence to perform fossil-calibrated molecular dating analyses across the tree. Taken together, our genome-wide data help to resolve multiple contentious sets of relationships among primates, while also providing insight into the biological processes and technical artifacts that led to the disagreements in the first place.

Combining three newly sequenced primate genomes with other published genomes, this study adapts a little-known method for detecting ancient introgression to genome-scale data, revealing multiple previously unknown examples of hybridization between primate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号