首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of present study was to investigate functional and physical alterations in membranes of heart mitochondria that are associated with remodeling of these organelles in acute phase of streptozotocin-induced diabetes and to elucidate the role of these changes in adaptation of the heart to acute streptozotocin-induced diabetes (evaluated 8 days after single dose streptozotocin application to male Wistar rats). Action of free radicals on the respiratory chain of diabetic-heart mitochondria was manifested by 17 % increase (p<0.05) in oxidized form of the coenzyme Q(10) and resulted in a decrease of states S3 and S4 respiration, the respiratory control index, rate of phosphorylation (all p<0.01) and the mitochondrial transmembrane potential (p<0.05), but the ADP/O ratio decreased only moderately (p>0.05). On the contrary, membrane fluidity and the total mitochondrial Mg2+-ATPase activity increased (both p<0.05). In diabetic heart mitochondria, linear regression analysis revealed a reciprocal relationship between the increase in membrane fluidity and decrease in trans-membrane potential (p<0.05, r = 0.67). Changes in membrane fluidity, transmembrane potential, Mg2+-ATPase activity and the almost preserved ADP/O ratio appear as the manifestation of endogenous protective mechanisms participating in the functional remodeling of mitochondria which contributes to adaptation of the heart to diabetes.  相似文献   

2.
Our previous preliminary results pointed to possible seasonal variations in Mg2+-ATPase activity of rat heart mitochondria (MIT). It is not too surprising since seasonal differences were already reported in myocardial function, metabolism and ultrastructure of the intact as well as hemodynamically overloaded rabbit hearts and also in other tissues. The present study is aimed to elucidate whether seasonal differences observed in rat heart MIT Mg2+-ATPase activity will be accompanied with changes in membrane fluidity and in the content of conjugated dienes (CD) in the lipid bilayers of MIT membranes as well as whether the above seasonal differences will also be present in the diabetic heart. Our results revealed that values of Mg2+-ATPase activity in the winter/spring-period (W/S-P) exceeded significantly (p<0.05-0.001) those in the summer/autumn-period (S/A-P). Similar trend was also observed in hearts of animals with acute (8 days) streptozotocin diabetes. With the exception of values of CD in the S/A-P, all values of Mg2+-ATPase activities, membrane fluidity and CD concentrations in diabetic hearts exceeded those observed in the healthy hearts. Our results indicate that seasonal differences may play a decisive role in the evaluation of properties and function of rat heart MIT.  相似文献   

3.
The hyperglycaemia and oxidative stress, that occur in diabetes mellitus, cause impairment of membrane functions in cardiomyocytes. Also reduced sensitivity to Ca-overload was reported in diabetic hearts (D). This enhanced calcium resistance is based on remodelling of the sarcolemmal membranes (SL) with down-regulated, but from the point of view of kinetics relatively well preserved Na,K-ATPase and abnormal Mg- and Ca-ATPase (Mg/Ca-ATPase) activities. It was hypothesised that in these changes may also participate the non-enzymatic glycation of proteins (NEG) and the related free radical formation (FRF), that decrease the membrane fluidity (SLMF), which is in reversal relationship to the fluorescence anisotropy (D 0.235 ± 0.022; controls (C) 0.185 ± 0.009; p < 0.001). In order to check the true role of SLMF in hearts of the diabetic rats (streptozotocin, single dose, 45 mg/kg i.v.) animals were treated in a special regimen with resorcylidene aminoguanidine (RAG, 4 mg/kg i.m.). The treatment with RAG eliminated completely the diabetes-induced decrease in the SLMF (C 0.185 ± 0.009; D + RAG 0.167 ± 0.013; p < 0.001rpar; as well as in NEG (fructosamine g.mg–1 of protein: C 2.68 ± 0.14; D 4.48 ± 0.85; D + RAG 2.57 ± 0.14; p < 0.001), and FRF in the SL (malondialdehyde: C 5.3 ± 0.3; D 8.63 ± 0.2; D + RAG 5.61 ± 0.53 mol.g–1; p < 0.05). Nevertheless, the SL ATPase activity in diabetic animals was not considerably influenced by RAG (increase in D + RAG vs. D 3.3%, p > 0.05). On the other hand, RAG increased considerably the vulnerability of the diabetic heart to overload with external Ca2+ (C 100% of hearts failed, D 83.3%, D + RAG 46.7% of hearts survived). So we may conclude, that: (i) The NEG and FRF caused alterations in SLMF, that accompanied the diabetes-induced remodelling of SL, also seem to participate in the protection of diabetic heart against Ca2+-overload; (ii) Although, the changes in SLMF were shown to influence considerably the ATPase activities in cells of diverse tissues, they seem to be little responsible for changes in ATPases-mediated processes in the SL of chronic diabetic hearts.  相似文献   

4.
Diabetes results in myocardial functional alterations which are accompanied by a depression of biochemical parameters such as myosin ATPase and calcium uptake in the sarcoplasmic reticulum. Methyl palmoxirate, a fatty acid analog, is reported to decrease circulating glucose levels by inhibiting fatty acid metabolism, thus forcing carbohydrate utilization. In the present study, we attempted to prevent streptozotocin diabetes-induced myocardial alterations in the rat. Using the isolated working heart preparation, we observed a depression of myocardial function in rats 6 weeks after the induction of diabetes, which was characterized by the inability of these hearts to develop left ventricular pressures and rates of ventricular contraction and relaxation as well as control hearts at higher left atrial filling pressures. Methyl palmoxirate treatment (25 mg kg-1 day-1 po daily) was unable to control diabetes-induced changes in plasma glucose, triglycerides, insulin, and total lipids. Also, the functional depression seen in diabetic rat hearts was present despite the treatment. However, depression of calcium uptake and elevation of long chain acyl carnitines seen in sarcoplasmic reticulum (SR) prepared from diabetic rat hearts could be prevented by the treatment. As triiodothyronine (T3) treatment has been shown to normalize depression of cardiac myosin ATPase in diabetic rats, we repeated the study using a combination of T3 (30 micrograms kg-1 day-1 sc daily) and methyl palmoxirate. While diabetic rats treated with T3 alone did not show significant improvement of myocardial function when compared with untreated diabetics, the function of those treated with both T3 and methyl palmoxirate was not significantly different from that in control rat hearts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

6.
Diabetes was induced in rats by administration of streptozotocin. After 90-120 days, one group of chronic diabetic animals was treated with insulin for chronic diabetic animals was treated with insulin for 10 days. The lipid fluidity and composition of microvillus membranes prepared from ileal enterocytes of control, diabetic, and insulin-treated diabetic animals were determined. Lipid fluidity, as assessed by steady-state fluorescence polarization techniques using the probes 1,6-diphenyl-1,3,5-hexatriene, DL-2-(9-anthroyl)stearic acid and DL-12-(9-anthroyl)stearic acid, was decreased in membranes of diabetic animals compared to membranes of control and insulin-treated diabetic membranes. The differences in fluidity resulted from an increased cholesterol content and cholesterol/phospholipid molar ratio in membranes of diabetic animals. The activities of sucrase and alkaline phosphatase were also found to be higher in membranes of diabetic animals. Insulin treatment, however, failed to significantly influence the enzymatic activities of these membranes. These studies, therefore, demonstrate that alterations in the lipid fluidity, lipid composition, and certain enzymatic activities exist in microvillus membranes of enterocytes prepared from chronic streptozotocin-induced diabetic rats. Administration of insulin for 10 days to these animals restored membrane fluidity and lipid composition but not enzymatic activities to control membrane levels.  相似文献   

7.
Because diabetes causes alterations in hepatic membrane fatty acid content, these changes may affect the Na+,K+-ATPase. In this study we documented the effects of streptozotocin (STZ)-induced diabetes on hepatic Na+,K+-ATPase catalytic alpha1-subunit and evaluated whether these changes could be normalized by fish oil supplementation. Two groups of diabetic rats received fish oil or olive oil supplementation. Both groups had a respective control group. We studied the localization of catalytic alpha1-subunit on bile canalicular and basolateral membranes using immunocytochemical methods and confocal laser scanning microscopy, and the Na+, K+-ATPase activity, membrane fluidity, and fatty acid composition on isolated hepatic membranes. A decrease in the alpha1-subunit was observed with diabetes in the bile canalicular membranes, without changes in basolateral membranes. This decrease was partially prevented by dietary fish oil. Diabetes induces significant changes as documented by enzymatic Na+,K+-ATPase activity, membrane fluidity, and fatty acid content, whereas little change in these parameters was observed after a fish oil diet. In conclusion, STZ-induced diabetes appears to modify bile canalicular membrane integrity and dietary fish oil partly prevents the diabetes-induced alterations.  相似文献   

8.
In perfused rat hearts alterations of aortic flow and mitochondrial membrane potential resulting from uncoupling of oxidative phosphorylation, hypoxia and treatment with a cardioprotective drug (2-mercaptopropionylglycine (MPG) have been studied. Mitochondrial membrane potential was followed by surface fluorimetry on DASPMI stained hearts. This fluorochrome specifically stains mitochondria in living cells; fluorescence intensity is related to the electrochemical gradient. Aortic flow turned out to be a much more sensitive indicator of heart function than ventricular pressure or mitochondrial membrane potential. No direct relationship exists between mitochondrial membrane potential and ATP production under the different metabolic conditions. Two phases of hypoxic mitochondrial damage have been deduced: the first results in derangement of ATP synthases while membrane potential is maintained, the second in irreversible damage of mitochondrial membranes with loss of membrane potential.  相似文献   

9.
Glycolysis uncoupled from glucose oxidation is a major reason for the intracellular acidosis that occurs during severe myocardial ischemia. The imbalance between glycolysis and glucose oxidation, and the resultant H+ produced from glycolytically derived ATP hydrolysis in the diabetic rat heart is the focus of this study. Isolated working hearts from 6 week streptozotocin diabetic rat hearts were perfused with 11 mM glucose and 1.2 mM palmitate and subjected to a 25 min period of global ischemia. A second series of experiments were also performed in which hearts from control, diabetic, and islet-transplanted diabetic rats were subjected to a 30 min aerobic perfusion, followed by a 60 min period of low-flow ischemia (coronary flow = 0.5 ml/min) and 30 min of aerobic reperfusion. H+ production from glucose metabolism was measured throughout the two protocols by simultaneous measurement of glycolysis and glucose oxidation using perfusate labelled with [5-3H/U-14C]-glucose. Rates of H+ production were calculated by measuring the difference between glycolysis and glucose oxidation. The H+ production throughout the perfusion was generally lower in diabetic rat hearts compared to control hearts, while islet-transplantation of diabetic rats increased H+ production to rates similar to those seen in control hearts. This occurred primarily due to a dramatic increase in the rates of glycolysis. Despite the difference in H+ production between control, diabetic and islet-transplanted diabetic rat hearts, no difference in mRNA levels of the cardiac Na+/H+-exchanger (NHE-1) was seen. This suggests that alterations in the source of protons (i.e. glucose metabolism) are as important as alterations in the fate of protons, when considering diabetes-induced changes in cellular pH. Furthermore, our data suggests that alterations in Na+/H+-exchange activity in the diabetic rat heart occur at a post-translational level, possibly due to direct alterations in the sarcolemmal membranes.  相似文献   

10.
Changes in the physico-chemical properties of erythrocyte membranes induced by nonenzymatic glycation as well as the possible prevention of their rise were studied. Using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy values were determined in erythrocyte membranes isolated from type 1 and type 2 diabetic patients with and without complications. The mean anisotropy values for the groups of diabetic patients were significantly higher than those for the control group (p < 0.01). This indicated pathologically decreased fluidity in cell membranes in the diabetics regardless of the type of diabetes or the presence of complications. The fluorescence anisotropy positively correlated (p < 0.01) with clinical parameters, such as glycohaemoglobin and plasma cholesterol content, which are important for the monitoring of the compensation status of the diabetic patient. Our results support the suggestion that protein crosslinking and oxidative stress induced by nonenzymatic glycation contribute to changes in the physico-chemical properties of erythrocyte membranes. In vitro testing of a new potential drug resorcylidene aminoguanidine (RAG) showed its ability to increase significantly (p < 0.001), to various extent (p < 0.01), the fluidity of both diabetic and control erythrocyte membranes. Upon the administration of RAG, reduced fluorescence anisotropy values for the groups of diabetic patients approached the normal values obtained for the controls. This may play an important role in the improvement of impaired cell functions found in diabetes that are controlled by the cell membrane.  相似文献   

11.
The influence of age on platelet lipid peroxide (LPO), platelet membrane fluidity and the composition of fatty acid was investigated in female Wistar rats widely ranging in age from 14 to 720 days old. LPO levels were significantly higher (p<0.05) in the platelets of upper age groups than in those of lower age groups, showing a significantly positive correlation with age (r=0.84, p<0.0001). Membrane fluidity, assessed by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence polarization, was significantly reduced with age. The composition of fatty acid demonstrated an age-related elevation (p<0.05) in the unsaturation index. The rises in the LPO levels revealed a significantly positive correlation with DPH-polarization (r=0.73, p<0.0001). Thus our results suggested that the age-related deterioration of platelet membrane fluidity, despite a significant elevation in the unsaturation index, was due to the age-related higher basal levels of LPO in platelets.  相似文献   

12.
Oral administration of vanadate to diabetic animals have been shown to stabilize the glucose homeostasis and restore altered metabolic pathways. However, vanadate exerts these effects at relatively high doses with several toxic effects. Low doses of vanadate are relatively safe but unable to elicit any antidiabetic effects. The present study explored the prospect of using low doses of vanadate with Trigonella foenum graecum, seed powder (TSP), another antidiabetic agent, and to evaluate their antidiabetic effect in diabetic rats. Alloxan diabetic rats were treated with insulin, vanadate, TSP and low doses of vanadate with TSP for three weeks. The effect of these antidiabetic compounds was examined on general physiological parameters, Na+/K+ ATPase activity, membrane lipid peroxidation and membrane fluidity in liver, kidney and heart tissues. Expression of glucose transporter (GLUT4) protein was also examined by immunoblotting method in experimental rat heart after three weeks of diabetes induction. Diabetic rats showed high blood glucose levels. Activity of Na+/K+ ATPase decreased in diabetic liver and heart. However, kidney showed a significant increase in Na+/K+ ATPase activity. Diabetic rats exhibited an increased level of lipid peroxidation and decreased membrane fluidity. GLUT4 distribution was also significantly lowered in heart of alloxan diabetic rats. Treatment of diabetic rats with insulin, TSP, vanadate and a combined therapy of lower dose of vanadate with TSP revived normoglycemia and restored the altered level of Na+/K+ ATPase, lipid peroxidation and membrane fluidity and also induced the redistribution of GLUT4 transporter. TSP treatment alone is partially effective in restoring the above diabetes-induced alterations. Combined therapy of vanadate and TSP was the most effective in normalization of altered membrane linked functions and GLUT4 distribution without any harmful side effect.  相似文献   

13.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

14.
It is known that an accumulation of lipoperoxidative aldehydes malondialdehyde (MDA) and 4-hydroxynonenal (HNE) takes place in liver mitochondria during aging. The existence and role of an increased extra- and intra-cellular oxidative stress in diabetes, an aging-accelerating disease, is currently under discussion. This report offers evidence that lipoperoxidative aldehydes accumulate in liver microsomes and mitochondria at a higher rate in spontaneously diabetic BB/WOR rats than in control non-diabetic animals (HNE content, diabetes vs. control: microsomes 80.6+/-19.9 vs. 25.75+/-3.6 pmol/mg prot, p = .024; mitochondria 77.4+/-15.4 vs. 26.5+/-3.5 pmol/mg prot, p = .0103). Liver subcellular fractions from diabetic rats, when exposed to the peroxidative stimulus ADP/Fe, developed more lipoperoxidative aldehydes than those from non diabetic rats (HNE amount, diabetes vs. control: microsomes 3.60+/-0.37 vs. 2.33+/-0.22 nmol/mg prot, p = .014; mitochondria 3.62+/-0.26 vs. 2.30+/-0.17 nmol/mg prot, p = .0009). Liver subcellular fractions of diabetic rats developed more fluorescent chromolipids related to HNE-phospholipid adducts, either after in vitro peroxidation (microsomes: p = .0045; mitochondria: p = .0023) or by exposure to exogenous HNE (microsomes: p = .049; mitochondria: p = .0338). This higher susceptibility of diabetic liver membranes to the non-enzymatic attack of HNE may be due to an altered phospholipid composition. Moreover, a decreased activity of the HNE-metabolizing systems can be involved: diabetic liver mitochondria and microsomes were unable to consume exogenous HNE at the same rate as non-diabetic membranes; the difference was already significant after 5' incubation (microsomes p<.001; mitochondria p<.001). These data show an increased oxidative stress inside the hepatocytes of diabetic rats; the impairment of the HNE-metabolizing systems can play a key role in the maintenance and propagation of the damage.  相似文献   

15.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

16.
We studied the effects of exhausting exercise and exercise training on skeletal muscle mitochondrial membrane fluidity and lipid peroxidation in rats. The first part of the study involved 60 untrained rats divided into six equal groups. Of the total number 10 rats were sedentary and acted as controls. The remaining 50 rats exercised to exhaustion and were sacrificed at 0-h, 24-h, 48-h, 72-h, and 96-h post-exercise. The second part of the study involved 40 rats which were divided into four equal groups. Of these 10 rats were sedentary and acted as controls. The remaining 30 rats underwent 8 weeks of exercise training. They were then subjected to a single period of exhausting exercise and were sacrificed at 0-h, 24-h and 48-h post-exercise. Membrane fluidity was measured using the fluorescence polarization method. Lipid peroxidation was estimated by determining the thiobarbituric acid-reactive substances (TBARS) in mitochondria. In the untrained rats, mitochondrial fluorescence polarization and TBARS contents were significantly increased post-exercise compared with the sedentary controls (P < 0.05). They did not return to near control levels until 96 h and 48 h, respectively. In the trained rats, fluorescence polarization was raised compared with the sedentary controls but this was significantly lower than those measured at the same times of the untrained group post-exercise (P < 0.05). Exhausting exercise decreased membrane fluidity and increased lipid peroxidation in rat skeletal muscle mitochondria. These effects were relieved to some extent by exercise training.  相似文献   

17.
This study examines the relationship between protein glycation and membrane fluidity in RBC membranes. Incubation of RBC membranes of healthy subjects with 25mM glucose or galactose at 37 degrees C induced a 38% (p less than 0.02) increase in protein glycation (using furosine determination by HPLC) and higher fluidity (p less than 0.05) in DPH polarization ratio). However, incubation of RBC membranes from diabetic subjects under the same conditions did not modify either membrane fluidity or protein glycation; protein glycation was above normal before incubation because of the high diabetic plasma glucose. There was no difference in the membrane fluidities of 21 healthy subjects and 32 diabetic subjects, despite a significantly elevated protein glycation in diabetics. Furthermore, there was no change with respect to age in either population. We conclude that other in vivo factors, such as membrane lipid changes (increase in CL/PL ratio) or formation of advanced Maillard products and peroxidation in the diabetic subjects, could be responsible for the difference between these in vitro results and the in vivo situation.  相似文献   

18.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

19.
Mitochondrial contact sites (MiCS) are dynamic structures involved in high capacity transport of energy from mitochondria into the cytosole. Previous studies revealed that in normal conditions the actual number of MiCS is in correlation with the energy requirements of the heart, particularly with those for its contractile work. Although the detailed mechanisms of signalling between the processes of energy utilisation and MiCS formation in the heart are not yet elucidated, it is known that intracellular Ca2+ transients are intimately involved in this crosstalk. The present study is devoted to investigation of Ca2+-linked MiCS formation in healthy adult hearts and in hearts with modified Ca2+-handling such as in developing, in juvenile and diabetic myocardium. Experiments were performed on hearts of healthy rats on the 22nd embryonal day, 1st, 4th, 7th and 14th postnatal days as well as on adult hearts. Diabetic hearts were investigated on the 8th day after streptozotocin injection (45 mg.kg–1 i.v.) to adult rats. Intracellular Ca2+ movements were affected by modulation of Ca2+ concentration in perfusion solution (1.6 or 2.2 mmol.l–1) in isolated, Langendorff-perfused hearts, by calcium paradox (CaP) or by replacing of Ca2+ by Cd2+ ions. Elevation of extracellular Ca2+ was reflected by 30.1, 10.4 and 24.1% increase in intracellular free Ca2+ concentration in healthy adult, diabetic and 14-day old hearts respectively. In developing hearts the amount of MiCS was culminating on the 4th postnatal day. In adult hearts, elevated calcium in the perfusion solution, CaP as well as diabetes led to a significant increase in the amounts of MiCS formed (58.1, 77.2 and 86.5% respectively; p < 0.05). Diabetic and 14-day old hearts naturally exhibited amounts of MiCS comparable to those obtained by Ca2+-stimulation of MiCS formation in adult healthy hearts. In contrast to healthy controls, perfusion of diabetic and 14-day old hearts with elevated Ca2+ as well as induction of CaP exerted little influence on MiCS formation (4.4 and 8.2% for elevated Ca2+; 2.9 and 10.7% for CaP; p > 0.05). A replacement of Ca2+ by Cd2+ ions lowered the amount of MiCS in healthy adult and diabetic hearts (61 and 52.2%; p < 0.05). In conclusion, during development, the formation of MiCS may be influenced by both, permanent stimulation by Ca2+-signalling and the availability of mCPK. In healthy adult hearts the amount of MiCS is modulated by intracellular Ca2+ transients in response to changes in extracellular Ca2+ concentration. In diabetic hearts the modulation of MiCS formation is naturally attenuated, apparently as a consequence of persisting alterations in Ca2+-handling.  相似文献   

20.
Weanling male Wistar rats were deprived of dietary and light sources of vitamin D for 11-18 weeks along with age-matched diet vitamin D-repleted controls to evaluate the role of lipid fluidity in the stimulatory effect of calcitriol on Ca transport. The "static" component of fluidity of proximal small intestine brush border membrane, as assessed by steady-state fluorescence techniques using the fluorophore 1,6-diphenyl-1,3,5-hexatriene, was similar between these two groups. In contrast, the "dynamic" component of fluidity, as assessed by DL-2-(9-anthroyl)-stearic acid and DL-12-(9-anthroyl)-stearic acid, was decreased in membranes of D-deprived animals. Lipid composition was analyzed to evaluate the potential mechanism mediating these fluidity changes. In vitamin D-deprived rats, linoleic (18:2) and arachidonic (20:4) acids of the phosphatidylcholine and phosphatidylethanolamine fractions of the membrane were decreased, whereas palmitic (16:0) and stearic (18:0) acids were increased in the phosphatidylethanolamine fraction of the membrane. These associated fatty acyl alterations could explain, at least in part, the differences in membrane fluidity between D-repleted and D-deprived rats. Membrane fluidity, lipid composition, and duodenal Ca transport were also analyzed 1, 2, and 5 h after the acute administration of 1-25-dihydroxycholecalciferol to D-deprived animals. In D-deprived rats, within 1-2 h, this hormone restored to levels of vitamin D-repleted controls the dynamic component of fluidity and concentrations of the same membrane phospholipid fatty acids. Since these changes temporally precede detectable increases in Ca absorption (demonstrable only during the 5th h), these data support the hypothesis that alterations in membrane fluidity and lipid composition may play an important role in the stimulation of intestinal calcium transport by calcitriol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号