首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.  相似文献   

2.
In order to prevent division of damaged chromosomes, cells activate a checkpoint to inhibit mitotic progression in order to repair the damaged DNA. Upon detection of DNA damage two downstream checkpoint kinases, Chk1 and Rad53, are activated by the sensor kinase, Mec1, to block the metaphase to anaphase transition and mitotic exit, respectively. Recent data from studies with budding yeast suggested that the DNA damage checkpoint also enlists the cAMP dependent protein kinase (PKA) pathway, which is an integral part of the nutrient sensing mechanism in budding yeast, to inhibit mitosis in response to DNA damage. Genetic and biochemical evidence suggested that the PKA pathway contributes to the inhibition of mitotic progression by mediating the phosphorylation of the APC specificity factor Cdc20. Phosphorylation of Cdc20 assists the activity of the checkpoint pathways in the inhibition of the degradation of mitotic inhibitors securin, Pds1, and the B type cyclin, Clb2, in order to block anaphase and mitotic exit. Cdc20 was phosphorylated following DNA damage in a PKA and Mec1 dependent manner, suggesting PKA activation is dependent on Mec1. Here we discuss possible mechanisms for how PKA activity could be regulated in response to DNA damage and we will also address the implication of these results in evaluating current cancer treatments.  相似文献   

3.
4.
Budding yeast Mec1, encoded by the yeast ATR/ATM homolog, negatively regulates cell cycle progression by activating Rad53 (Chk2) and Chk1, two parallel downstream checkpoint pathways. Chk1 phosphorylates Pds1 (securin), which prevents Pds1 degradation. We determined whether activation of both downstream pathways is required to establish G2 arrest in response to double-strand breaks (DSBs). In a hypomorphic mec1 mutant, Rad53 activation was not required to establish G2 arrest triggered by a single HO endonuclease-generated DSB. However, Pds1 phosphorylation did correlate with G2 arrest and mec1-21 pds1 cells did not arrest in G2 after exposure to ionizing radiation. The G2 checkpoint genes, CHK1 and PDS1, did confer radiation resistance in mec1-21, indicating that CHK1-mediated pathway is functional in the mec1 hypomorph. Thus, phosphorylation of Pds1 but not Rad53 correlates with G2 arrest in response to DSBs in the mec1 hypomorphic mutant.  相似文献   

5.
The conserved checkpoint kinases Chk1 and Rad53-Dun1 block the metaphase to anaphase transition by the phosphorylation and stabilization of securin, and block the mitotic exit network regulated by the Bfa1-Bub2 complex. However, both chk1 and rad53 mutants are able to exit from mitosis and initiate a new cell cycle, suggesting that both pathways have supporting functions in restraining anaphase and in blocking the inactivation of mitotic cyclin-Cdk1 complexes. Here we find that the cyclic-AMP-dependent protein kinase (PKA) pathway supports Chk1 in the regulation of mitosis by targeting the mitotic inducer Cdc20. Cdc20 is phosphorylated on PKA consensus sites after DNA damage, and this phosphorylation requires the Atr orthologue Mec1 and the PKA catalytic subunits Tpk1 and Tpk2. We show that the inactivation of PKA or expression of phosphorylation-defective Cdc20 proteins accelerates securin and Clb2 destruction in chk1 mutants and is sufficient to remove most of the DNA damage-induced delay. Mutation of the Cdc20 phosphorylation sites permitted the interaction of Cdc20 with Clb2 under conditions that should halt cell cycle progression. These data show that PKA pathways regulate mitotic progression through Cdc20 and support the DNA damage checkpoint pathways in regulating the destruction of Clb2 and securin.  相似文献   

6.
Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA.  相似文献   

7.
8.
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.  相似文献   

9.
10.
Rad9 is required for the MEC1/TEL1-dependent activation of Saccharomyces cerevisiae DNA damage checkpoint pathways mediated by Rad53 and Chk1. DNA damage induces Rad9 phosphorylation, and Rad53 specifically associates with phosphorylated Rad9. We report here that multiple Mec1/Tel1 consensus [S/T]Q sites within Rad9 are phosphorylated in response to DNA damage. These Rad9 phosphorylation sites are selectively required for activation of the Rad53 branch of the checkpoint pathway. Consistent with the in vivo function in recruiting Rad53, Rad9 phosphopeptides are bound by Rad53 forkhead-associated (FHA) domains in vitro. These data suggest that functionally independent domains within Rad9 regulate Rad53 and Chk1, and support the model that FHA domain-mediated recognition of Rad9 phosphopeptides couples Rad53 to the DNA damage checkpoint pathway.  相似文献   

11.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

12.
The Saccharomyces cerevisiae Mec1-Ddc2 protein kinase (human ATR-ATRIP) initiates a signal transduction pathway in response to DNA damage and replication stress to mediate cell cycle arrest. The yeast DNA damage checkpoint clamp Ddc1-Mec3-Rad17 (human Rad9-Hus1-Rad1: 9-1-1) is loaded around effector DNA and thereby activates Mec1 kinase. Dpb11 (Schizosaccharomyces pombe Cut5/Rad4 or human TopBP1) is an essential protein required for the initiation of DNA replication and has a role in checkpoint activation. In this study, we demonstrate that Dpb11 directly activates the Mec1 kinase in phosphorylating the downstream effector kinase Rad53 (human Chk1/2) and DNA bound RPA. However, DNA was not required for Dpb11 to function as an activator. Dpb11 and yeast 9-1-1 independently activate Mec1, but substantial synergism in activation was observed when both activators were present. Our studies suggest that Dpb11 and 9-1-1 may partially compensate for each other during yeast checkpoint function.  相似文献   

13.
Background information. In budding yeast, the loss of either telomere sequences (in telomerase‐negative cells) or telomere capping (in mutants of two telomere end‐protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. Results. We report that in telomerase‐negative (tlc1Δ) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end‐protection proteins (cdc131 yku70Δ). In telomerase‐negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA‐damage‐induced cell‐cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53–Mrc1 complex in tlc1Δ rad9Δ cells, Mrc1 did not mediate the cell‐cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. Conclusions. These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53–Rad9‐mediated cell‐cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53–Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.  相似文献   

14.
Kim EM  Burke DJ 《PLoS genetics》2008,4(2):e1000015
The DNA damage checkpoint and the spindle assembly checkpoint (SAC) are two important regulatory mechanisms that respond to different lesions. The DNA damage checkpoint detects DNA damage, initiates protein kinase cascades, and inhibits the cell cycle. The SAC relies on kinetochore-dependent assembly of protein complexes to inhibit mitosis when chromosomes are detached from the spindle. The two checkpoints are thought to function independently. Here we show that yeast cells lacking the DNA damage checkpoint arrest prior to anaphase in response to low doses of the DNA damaging agent methyl methane sulfonate (MMS). The arrest requires the SAC proteins Mad1, Mad2, Mad3, Bub1, and Bub3 and works through Cdc20 and Pds1 but unlike the normal SAC, does not require a functional kinetochore. Mec1 (ATR) and Tel1 (ATM) are also required, independently of Chk1 and Rad53, suggesting that Mec1 and Tel1 inhibit anaphase in response to DNA damage by utilizing SAC proteins. Our results demonstrate cross-talk between the two checkpoints and suggest that assembling inhibitory complexes of SAC proteins at unattached kinetochores is not obligatory for their inhibitory activity. Furthermore, our results suggest that there are novel, important targets of ATM and ATR for cell cycle regulation.  相似文献   

15.
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.  相似文献   

16.
Rad53, the ortholog of mammalian Chk2, is a major DNA damage checkpoint effector kinase in Saccharomyces cerevisiae. Despite extensive studies on the genetic requirements for Rad53 activation and its linkage downstream to checkpoint responses, the mechanism of Rad53 activation is not completely understood. Rad53-dependent signal amplification is thought to be a primary force that accelerates checkpoint signal transduction processes in response to DNA damage. Rad53 forms oligomers upon DNA damage in vivo. It is not clear how oligomer formation affects Rad53 activation and what is the mechanism of Rad53 oligomerization. Here, we monitor Rad53 oligomer assembly and disassembly in vitro. These processes are ATP-dependent and are regulated through phosphorylation. Mutations in FHA or SCD domains of RAD53 compromise intermolecular autophosphorylation activity and these domains are indispensable for Rad53 oligomerization. The mediator Rad9 is not necessary for Rad53 oligomerization. Rad53 kinase activity is required for disassembly of Rad53 oligomers in vivo after DNA damage. Moreover, induced oligomerization of Rad53 efficiently activates Rad53 in the absence of Mec1 in vivo. The results support the conclusions that Rad53/Chk2 homo-oligomerization is an evolutionarily conserved mechanism that drives Rad53/Chk2 activation and promotes signal amplification in DNA damage responses.  相似文献   

17.
The protein kinase Chk1 enforces the DNA damage checkpoint. This checkpoint delays mitosis until damaged DNA is repaired. Chk1 regulates the activity and localization of Cdc25, the tyrosine phosphatase that activates the cdk Cdc2. Here we report that Mik1, a tyrosine kinase that inhibits Cdc2, is positively regulated by the DNA damage checkpoint. Mik1 is required for checkpoint response in strains that lack Cdc25. Long-term DNA damage checkpoint arrest fails in Δmik1 cells. DNA damage increases Mik1 abundance in a Chk1-dependent manner. Ubiquitinated Mik1 accumulates in a proteasome mutant, which indicates that Mik1 normally has a short half-life. Thus, the DNA damage checkpoint might regulate Mik1 degradation. Mik1 protein and mRNA oscillate during the unperturbed cell cycle, with peak amounts detected around S phase. These data indicate that regulation of Mik1 abundance helps to couple mitotic onset to the completion of DNA replication and repair. Coordinated negative regulation of Cdc25 and positive regulation of Mik1 ensure the effective operation of the DNA damage checkpoint.  相似文献   

18.
Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.  相似文献   

19.
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. The checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. The ira1D ira2D recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery, and implicates the Ras signaling pathway as an important regulator of mitotic events.  相似文献   

20.
The ATR family of checkpoint kinases is essential for an appropriate response to genomic insults in eukaryotes. Included in this family are Mei-41 in Drosophila, Mec1 in S. cerevisiae, Rad3 in S. pombe, and ATR in vertebrates. These large kinases phosphorylate and modify multiple cell cycle and checkpoint factors, leading to cell cycle arrest, DNA repair, and induction of apoptosis. The catalytic domain of all ATR family members comprises only a fraction of the total protein. Here, we show that the non-catalytic portion of ATR has a conserved function in the checkpoint response. Expression of either wild type or various kinase defective forms of Xenopus ATR (XATR) in S. cerevisiae mec1 mutants suppresses the checkpoint defect and induces a DNA damage dependent mitotic cell cycle arrest. This suppression requires the presence of yeast Ddc2 and Rad9 but functions independently of Rad9 modification and Rad53 activation. Our results indicate that XATR is not functioning through the established mitotic checkpoint pathways. Instead, we find that the XATR suppression of the mec1 mutant checkpoint defect requires the spindle checkpoint factors Mad1 and Mad2, suggesting a role for XATR in the spindle assembly checkpoint. Finally, we show that a yeast strain expressing a truncated, kinase domain deleted form of mec1 from the endogenous locus is partially checkpoint proficient and induces a mitotic cell cycle arrest in a Mad2 dependent manner. Thus, the link between the non-catalytic region of the ATR kinase family and the spindle checkpoint pathway is conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号