首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu LJ  Ren M  Wang H  Kim SS  Cao X  Zhuo M 《PloS one》2008,3(1):e1407
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.  相似文献   

2.
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.  相似文献   

3.
Long-term potentiation (LTP) and long-term depression (LTD) are the two major forms of long-lasting synaptic plasticity in the mammalian neurons, and are directly related to higher brain functions such as learning and memory. Experimentally, they are characterized by a change in the strength of a synaptic connection induced by repetitive and properly patterned stimulation protocols. Although many important details of the molecular events leading to LTP and LTD are known, experimenters often report problems in using standard induction protocols to obtain consistent results, especially for LTD in vivo. We hypothesize that a possible source of confusion in interpreting the results, from any given experiment on synaptic plasticity, can be the intrinsic limitation of the experimental techniques, which cannot take into account the actual state and peak conductance of the synapses before the conditioning protocol. In this article, we investigate the possibility that the same experimental protocol may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent the phenomena observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation for why LTD induction is experimentally difficult to obtain. They also suggest experimentally testable predictions on the stimulation protocols that may be more effective.  相似文献   

4.
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.  相似文献   

5.
Do stress and long-term potentiation share the same molecular mechanisms?   总被引:2,自引:0,他引:2  
Stress is a biological, significant factor shown to influence hippocampal synaptic plasticity and cognitive functions. Although numerous studies have reported that stress produces a suppression in long-term potentiation (LTP; a putative synaptic mechanism underlying learning and memory), little is known about the mechanism by which this occurs. Because the effects of stress on LTP and its converse process, long-term depression (LTD), parallel the changes in synapticity that occur following the establishment of LTP with tetanic stimulation (i.e., occluding LTP and enhancing LTD induction), it has been proposed that stress affects subsequent hippocampal plasticity by sharing the same molecular machinery required to support LTP. This article summarizes recent findings from ours and other laboratories to assess this view and discusses relevant hypotheses in the study of stress-related modifications of synaptic plasticity.  相似文献   

6.
BACKGROUND: Changes in synaptic efficacy are believed to mediate the processes of learning and memory formation. Accumulating evidence implicates cell adhesion molecules in activity-dependent synaptic modifications associated with long-term potentiation (LTP); however, there is no precedence for the selective role of this molecule class in long-term depression (LTD). The mechanisms that modulate these processes still remain unclear. RESULTS: We report a novel role for glycosylphosphatidyl inositol (GPI)-anchored contactin in hippocampal CA1 synaptic plasticity. Contactin selectively supports paired-pulse facilitation (PPF) and NMDA (N-methyl-D-aspartate) receptor-dependent LTD but is not required for synaptic morphology, basal transmission, or LTP. Molecular analyses indicate that contactin is essential for the membrane and synaptic targeting of the contactin-associated protein (Caspr/paranodin) and for the proper distribution of a presumptive ligand, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan. CONCLUSIONS: These results indicate that contactin plays a selective role in synaptic plasticity and identify PPF and LTD, but not LTP, as contactin-dependent processes. Engagement of the contactin-Caspr complex with RPTPbeta may thus regulate cell-cell interactions contributing to specific synaptic plasticity forms.  相似文献   

7.
Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Realtime PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.  相似文献   

8.
The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.  相似文献   

9.
Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca2+ signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.  相似文献   

10.
11.
Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.  相似文献   

12.
Zhou Q  Homma KJ  Poo MM 《Neuron》2004,44(5):749-757
Activity-induced modification of neuronal connections is essential for the development of the nervous system and may also underlie learning and memory functions of mature brain. Previous studies have shown an increase in dendritic spine density and/or enlargement of spines after the induction of long-term potentiation (LTP). Using two-photon time-lapse imaging of dendritic spines in acute hippocampal slices from neonatal rats, we found that the induction of long-term depression (LTD) by low-frequency stimulation is accompanied by a marked shrinkage of spines, which can be reversed by subsequent high-frequency stimulation that induces LTP. The spine shrinkage requires activation of NMDA receptors and calcineurin, similar to that for LTD. However, spine shrinkage is mediated by cofilin, but not by protein phosphatase 1 (PP1), which is essential for LTD, suggesting that different downstream pathways are involved in spine shrinkage and LTD. This activity-induced spine shrinkage may contribute to activity-dependent elimination of synaptic connections.  相似文献   

13.
Tse YC  Bagot RC  Hutter JA  Wong AS  Wong TP 《PloS one》2011,6(11):e27215
Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT) on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR) that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs), which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure) increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP) and long-term depression (LTD) within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.  相似文献   

14.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

15.
Tan T  Zhang BL  Tian X 《生理学报》2011,63(3):225-232
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(longterm-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关.本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36 h孵育形成的寡聚体Aβ...  相似文献   

16.
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.  相似文献   

17.
18.
19.
In animal models of diabetes mellitus, such as the streptozotocin-diabetic rat (STZ-rat), spatial learning impairments develop in parallel with a reduced expression of long-term potentiation (LTP) and enhanced expression of long-term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ-diabetes and insulin treatment on the hippocampal post-synaptic glutamate N-methyl-D-aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post-synaptic density (PSD) fraction. In addition, the functional properties of the NMDA-receptor complex were examined. One month of STZ-diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr-dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and alphaCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ-rats compared with age-matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ-rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII-NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post-synaptic glutamatergic transmission is related to deficits in learning and plasticity in this animal model.  相似文献   

20.
Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号