首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is proposed for allowing for the effects of population differentiation, and other factors, in forensic inference based on DNA profiles. Much current forensic practice ignores, for example, the effects of coancestry and inappropriate databases and is consequently systematically biased against defendants. Problems with the ‘product rule’ for forensic identification have been highlighted by several authors, but important aspects of the problems are not widely appreciated. This arises in part because the match probability has often been confused with the relative frequency of the profile. Further, the analogous problems in paternity cases have received little attention. The proposed method is derived under general assumptions about the underlying population genetic processes. Probabilities relevant to forensic inference are expressed in terms of a single parameter whose values can be chosen to reflect the specific circumstances. The method is currently used in some UK courts and has important advantages over the ‘Ceiling Principle’ method, which has been criticized on a number of grounds. Editor's comments The authors' work offers a sound approach to accommodating the effects of population structure, based on use of Wright'sF ST . Their equations 1 and 2 are very convenient, and are good approximations to the exact results given by Weir (1994). As they point out, good estimates ofF ST are needed. The comments about the ‘generally mixed’ results of independence tests may be met, in part, by the paper of Maiste and Weir in this volume. The authors cite Kraneet al. (1992) but had not seen the subsequent rebuttal by Budowleet al. (1994). The work of Wallet al. (1993) contained errors, as noted in Greenhalghet al. (1994). An erratum to this article is available at .  相似文献   

2.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

3.
Kremer A  Le Corre V 《Heredity》2012,108(4):375-385
We dissected the relationship between genetic differentiation (Q(ST)) for a trait and its underlying genes (G(STq), differentiation for a quantitative locus) in an evolutionary context, with the aim of identifying the conditions in which these two measurements are decoupled. We used two parameters (θ(B) and θ(W)) scaling the contributions of inter- and intrapopulation allelic covariation between genes controlling the trait of interest. We monitored the changes in θ(B) and θ(W), Q(ST) and G(STq) over successive generations of divergent and stabilizing selection, in simulations for an outcrossing species with extensive gene flow. The dynamics of these parameters are characterized by two phases. Initially, during the earliest generations, differentiation of the trait increases very rapidly and the principal and immediate driver of Q(ST) is θ(B). During subsequent generations, G(STq) increases steadily and makes an equal contribution to Q(ST). These results show that selection first captures beneficial allelic associations at different loci at different populations, and then targets changes in allelic frequencies. The same patterns are observed when environmental change modifies divergent selection, as shown by the very rapid response of θ(B) to the changes of selection regimes. We compare our results with previous experimental findings and consider their relevance to the detection of molecular signatures of natural selection.  相似文献   

4.
Reduced levels of genetic variability and a prominent differentiation in both neutral marker genes and phenotypic traits are typical for many island populations as compared to their mainland conspecifics. However, whether genetic diversity in neutral marker genes reflects genetic variability in quantitative traits, and thus, their evolutionary potential, remains typically unclear. Moreover, the phenotypic differentiation on islands could be attributable to phenotypic plasticity, selection or drift; something which seldom has been tested. Using eight polymorphic microsatellite loci and quantitative genetic breeding experiments we conducted a detailed comparison on genetic variability and differentiation between Nordic islands (viz. Gotland, Öland and Læsø) and neighbouring mainland populations of moor frogs (Rana arvalis). As expected, the neutral variation was generally lower in island than in mainland populations. But as opposed to this, higher levels of additive genetic variation (V A) in body size and tibia length were found on the island of Gotland as compared to the mainland population. When comparing the differentiation seen in neutral marker genes (F ST) with the differentiation in genes coding quantitative traits (Q ST) two different evolutionary scenarios were found: while selection might explain a smaller size of moor frogs on Gotland, the differentiation seen in tibia length could be explained by genetic drift. These results highlight the limited utility of microsatellite loci alone in inferring the causes behind an observed phenotypic differentiation, or in predicting the amount of genetic variation in ecologically important quantitative traits.  相似文献   

5.
Genetic variability in 10 natural Tunisian populations of Medicago laciniata were analysed using 19 quantitative traits and 12 polymorphic microsatellite loci. A large degree of genetic variability within-populations and among-populations was detected for both quantitative characters and molecular markers. High genetic differentiation among populations for quantitative traits was seen, with Q ST = 0.47, and F ST = 0.47 for microsatellite markers. Several quantitative traits displayed no statistical difference in the levels of Q ST and F ST . Further, significant correlations between quantitative traits and eco-geographical factors suggest that divergence in the traits among populations may track environmental differences. There was no significant correlation between genetic variability at quantitative traits and microsatellite markers within populations. The site-of-origin of eco-geographical factors explain between 18.13% and 23.40% of genetic variance among populations at quantitative traits and microsatellite markers, respectively. The environmental factors that most influence variation in measured traits among populations are assimilated phosphorus (P205) and mean annual rainfall, followed by climate and soil texture, altitude and organic matter. Significant associations between eco-geographical factors and gene diversity, H e , were established in five-microsatellite loci suggesting that these simple sequence repeats (SSRs) are not necessarily biologically neutral.  相似文献   

6.
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation‐by‐distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome‐wide association studies.  相似文献   

7.
Selection and genetic drift can create genetic differences between populations. Cytokines and chemokines play an important role in both hematopoietic development and the inflammatory response. We compared the genotype frequencies of 45 SNPs in 30 cytokine and chemokine genes in two healthy Chinese populations and one Caucasian population. Several SNPs in IL4 had substantial genetic differentiation between the Chinese and Caucasian populations (F ST ~0.40), and displayed a strikingly different haplotype distribution. To further characterize common genetic variation in worldwide populations at the IL4 locus, we genotyped 9 SNPs at the IL4 gene in the Human Diversity Panel’s (N = 1056) individuals from 52 world geographic regions. We observed low haplotype diversity, yet strikingly different haplotype frequencies between non-African populations, which may indicate different selective pressures on the IL4 gene in different parts of the world. SNPs in CSF2, IL6, IL10, CTLA4, and CX3CR1 showed moderate genetic differentiation between the Chinese and Caucasian populations (0.15 < F ST < 0.25). These results suggest that there is substantial genetic diversity in immune genes and exploration of SNP associations with immune-related diseases that vary in incidence across these two populations may be warranted.  相似文献   

8.
In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.  相似文献   

9.

Background and Aims

Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QSTFST comparison).

Methods

A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance.

Key Results

Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites.

Conclusions

Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.  相似文献   

10.
Girard  P.  Palabost  L.  Petit  C. 《Biochemical genetics》1977,15(5-6):589-599
Allozyme polymorphisms at seven loci have been studied in nine natural populations of Drosophila melanogaster from the Saône and Rhône valleys sampled in 1973 and 1974. A great deal of polymorphism was observed; an individual was on the average heterozygous at 20.2% of its loci. The populations were genetically very homogeneous throughout the region sampled. The number of ovariolae per female varied from one group of populations to another depending on their geographical separation. Yet the number of ovariolae remained constant from one year to the next. The results show that migration alone cannot explain the homogeneity of the allozyme frequencies. It seems reasonable to conclude that selection plays a major role in maintaining the homogeneity of populations living in proximal biotopes.E.R.A. No. 406: Analyse et mécanismes de maintien du polymorphisme.  相似文献   

11.
Measures of genetic parental distances (GPD) based on microsatellite loci (D (2) and IR), have been suggested to be better correlated with fitness than individual heterozygosity (H), as they contain information about past events of inbreeding or admixture. We investigated if GPD increased with increasing genetic divergence between parental populations in Drosophila buzzatii and if the measures indicate past events of admixture. Further we evaluated the relationship between GPD, fitness and fluctuating asymmetry (FA) of size and shape. We investigated three populations of Drosophila buzzati, from Argentina, Europe and Australia. From these populations two intraspecific hybridisation lines were made; one between the Argentinean and European populations, which have been separated 200 years and one between the populations from Argentina and Australia, which have been separated 80 years. By doing this we obtained hybrid progeny having different levels of GPD. We found that D (2) and H can be used as indicators of admixture when comparing hybrid individuals with their parentals. IR was not informative. Our results does not exclude the presence of genetic fitness correlations (GFC) over individuals with a broad fitness range from populations in equilibrium, but we doubt the presence of GFC using GPD measures in admixed populations. Shape FA could be a relevant measure for fitness, however, only when comparing populations, not at individual level.  相似文献   

12.
Quantitative trait locus (QTL) mapping studies often employ segregating generations derived from a cross between genetically divergent inbred lines. In the analysis of such data it is customary to fit a single QTL and use a null hypothesis which assumes that the genomic region under study contributes no genetic variance. To explore the situation in which multiple linked genes contribute to the genetic variance, we simulated an F2-mapping experiment in which the genetic difference between the two original inbred strains was caused by a large number of loci, each having equal effect on the quantitative trait. QTLs were either in coupling, dispersion or repulsion phase in the base population of inbred lines, with the expected F2 genetic variance explained by the QTLs being equivalent in the three models. Where QTLs were in coupling phase, one inbred line was fixed for all plus alleles, and the other line was fixed for minus alleles. Where QTLs were in dispersion phase, they were assumed to be randomly fixed for one or other allele (as if the inbred lines had evolved from a common ancestor by random drift). Where QTLs were in repulsion phase alleles within an inbred line were alternating plus and minus at adjacent loci, and alternative alleles were fixed in the two inbred lines. In all these genetic models a standard interval mapping test statistic used to determine whether there is a QTL of large effect segregating in the population was inflated on average. Furthermore, the use of a threshold for QTL detection derived under the assumption that no QTLs were segregating would often lead to spurious conclusions regards the presence of genes of large effects (i.e. type I errors). The employment of an alternative model for the analysis, including linked markers as cofactors in the analysis of a single interval, reduced the problem of type I error rate, although test statistics were still inflated relative to the case of no QTLs. It is argued that in practice one should take into account the difference between the strains or the genetic variance in the F2 population when setting significance thresholds. In addition, tests designed to probe the adequacy of a single-QTL model or of an alternative infinitesimal coupling model are described. Such tests should be applied in QTL mapping studies to help dissect the true nature of genetic variation.  相似文献   

13.
Knowledge of local adaptation and adaptive potential of natural populations is becoming increasingly relevant due to anthropogenic changes in the environment, such as climate change. The concern is that populations will be negatively affected by increasing temperatures without the capacity to adapt. Temperature-related adaptability in traits related to phenology and early life history are expected to be particularly important in salmonid fishes. We focused on the latter and investigated whether four populations of brown trout (Salmo trutta) are locally adapted in early life-history traits. These populations spawn in rivers that experience different temperature conditions during the time of incubation of eggs and embryos. They were reared in a common-garden experiment at three different temperatures. Quantitative genetic differentiation (QST) exceeded neutral molecular differentiation (FST) for two traits, indicating local adaptation. A temperature effect was observed for three traits. However, this effect varied among populations due to locally adapted reaction norms, corresponding to the temperature regimes experienced by the populations in their native environments. Additive genetic variance and heritable variation in phenotypic plasticity suggest that although increasing temperatures are likely to affect some populations negatively, they may have the potential to adapt to changing temperature regimes.  相似文献   

14.
Traditional methods for characterizing genetic differentiation among populations rely on a priori grouping of individuals. Bayesian clustering methods avoid this limitation by using linkage and Hardy–Weinberg disequilibrium to decompose a sample of individuals into genetically distinct groups. There are several software programs available for Bayesian clustering analyses, all of which describe a decrease in the ability to detect distinct clusters as levels of genetic differentiation among populations decrease. However, no study has yet compared the performance of such methods at low levels of population differentiation, which may be common in species where populations have experienced recent separation or high levels of gene flow. We used simulated data to evaluate the performance of three Bayesian clustering software programs, PARTITION, STRUCTURE, and BAPS, at levels of population differentiation below F ST=0.1. PARTITION was unable to correctly identify the number of subpopulations until levels of F ST reached around 0.09. Both STRUCTURE and BAPS performed very well at low levels of population differentiation, and were able to correctly identify the number of subpopulations at F ST around 0.03. The average proportion of an individual’s genome assigned to its true population of origin increased with increasing F ST for both programs, reaching over 92% at an F ST of 0.05. The average number of misassignments (assignments to the incorrect subpopulation) continued to decrease as F ST increased, and when F ST was 0.05, fewer than 3% of individuals were misassigned using either program. Both STRUCTURE and BAPS worked extremely well for inferring the number of clusters when clusters were not well-differentiated (F ST=0.02–0.03), but our results suggest that F ST must be at least 0.05 to reach an assignment accuracy of greater than 97%.  相似文献   

15.
Summary We report that plant height quantitative trait loci (QTLs) identified in a given small population are not consistent with QTLs identified in other small populations, and that most QTLs are in close proximity to mapped qualitative genetic loci. These observations provide evidence to support the hypothesis that qualitative genetic loci are the same loci that affect quantitative traits, and affirm that these modest experiments probably identify real QTLs.  相似文献   

16.
A new polymerase chain reaction-based screening method for microsatellites is presented. Using this method, we isolated 12 microsatellite loci from Drosophila buzzatii, two of which were X-linked. We applied the other 10 microsatellite loci to the analysis of genetic variation in five natural populations of D. buzzatii. Two populations were from the species' original distribution in Argentina, whereas the other three were from Europe (two) and Australia that were colonized 200 and 65 years ago, respectively. Allelic variation was much larger in the original populations than in the colonizing ones and there was a tendency to decreased heterozygosity in the colonizing populations. We used three different statistical procedures for detecting population bottlenecks. All procedures suggested that the low variability in the populations in the Old World was not the result of the recent population decline, but was due to a founder effect followed by a population expansion. In fact, one procedure which detects population expansions and declines based on the genealogical history of microsatellite data suggested that an expansion had taken place in all the colonized populations.  相似文献   

17.
In hybrids between the sibling species D. buzzatii and D. koepferae, both sexes are more or less equally viable in the F1: However, backcross males to D. buzzatii are frequently inviable, apparently because of interspecific genetic incompatibilities that are cryptic in the F1. We have performed a genetic dissection of the effects of the X chromosome from D. koepferae. We found only two cytological regions, termed hmi-1 and hmi-2, altogether representing 9% of the whole chromosome, which when introgressed into D. buzzatii cause inviability of hybrid males. Observation of the pattern of asynapsis of polytene chromosomes (incomplete pairing, marking introgressed material) in females and segregation analyses were the technique used to infer the X chromosome regions responsible for this hybrid male inviability. The comparison of these results with those previously obtained with the same technique for hybrid male sterility in this same species pair indicate that in the X chromosome of D. koepferae there are at least seven times more regions that produce hybrid male sterility than hybrid male inviability. We have also found that the inviability brought about by the introgression of hmi-1 is suppressed by the cointrogression of two autosomal sections from D. koepferae. Apparently, these three regions conform to a system of species-specific complementary factors involved in an X-autosome interaction that, when disrupted in backcross hybrids by recombination with the genome of its sibling D. buzzatii, brings about hybrid male inviability.  相似文献   

18.
In this work we investigate the effect of interspecific hybridization on wing morphology using geometric morphometrics in the cactophilic sibling species D. buzzatii and D. koepferae. Wing morphology in F1 hybrids exhibited an important degree of phenotypic plasticity and differs significantly from both parental species. However, the pattern of morphological variation between hybrids and the parental strains varied between wing size and wing shape, across rearing media, sexes, and crosses, suggesting a complex genetic architecture underlying divergence in wing morphology. Even though there was significant fluctuating asymmetry for both, wing size and shape in F1 hybrids and both parental species, there was no evidence of an increased degree of fluctuating asymmetry in hybrids as compared to parental species. These results are interpreted in terms of developmental stability as a function of a balance between levels of heterozygosity and the disruption of coadaptation as an indirect consequence of genomic divergence.  相似文献   

19.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

20.
Mesiodistal crown diameters of I1 through M1 and six non-metric crown traits in permanent dentition of Japanese-American F1 hybrids were compared with those of the parental populations. The hybrids were born of Japanese females and American males, both Caucasians and American Blacks, after World War II and brought up at Elizabeth Saunders Home in Kanagawa Prefecture, Japan. The comparisons were undertaken by means of multivariate analysis methods such as principal component analysis, distance and similarity coefficients and multidimensional scaling. The F1 hybrids generally occupy an intermediate position of the two parental populations, and this is particularly evident in size component of the crown measurements and in distance analysis of frequencies of the non-metric crown traits. The shape component of the crown measurements, however, not necessarily follows such a rule and suggests a more complicated gene control than in the case of the size component. Also, each measurement and frequency of non-metric trait of tooth crowns in F1 hybrids is not uniformly at the middle position between their parental populations but this is true when they are analyzed as multivariables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号