首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thakur A  Pal L  Ahmad A  Khan MI 《IUBMB life》2007,59(12):758-764
The thermodynamics and kinetics of binding of glycans and glycoproteins to Ganoderma lucidum lectin was studied using surface plasmon resonance. The lectin showed highest affinity for asialo triantennary N glycan (Ka = 3.52 x 10(5)) among the glycans tested. There was a several fold increase in affinity for glycoproteins compared to their corresponding glycans and coincident increase in contribution from enthalpy (DeltaH), suggesting the involvement of hydrogen bonding in the interaction as well as involvement of protein-protein interactions. Increased affinity also showed increase in unfavorable negative binding entropy (DeltaS) which was compensated with higher enthalpy. The glycoproteins showed faster association rates (k(1)) and the activation energy (E(1)) in the association process was much lower for the glycoproteins than glycans, resulting in their faster associations. These observations elaborate the role of protein matrix in lectin-glycoconjugate interaction.  相似文献   

2.
Amaranthus leucocarpus lectin is a homodimeric glycoprotein of 35 kDa per sub-unit, which interacts specifically with N-acetyl-galactosamine. In this work, we compared different glycoproteins that contain Galbeta1-3 GalNAcalpha1-3 Ser/Thr or GalNAcalpha1-3 Ser/Thr in their structure as ligands to purify the A. leucocarpus lectin. From the glycoproteins tested, fetuin was the most potent inhibitor of the hemagglutinating activity and the better ligand for lectin purification; however, the use of desialylated stroma from erythrocytes represented the cheapest method to purify this lectin. O-linked glycans released from the glycoproteins used as affinity matrix and those from different erythrocytes were less inhibitory than parental glycoproteins. The NH2-terminal of the lectin is blocked; moreover, this is the only example of a lectin isolated from this genus to be a glycoprotein. Analysis of the glycoprotein sequences with inhibitory activity for the lectin, showed a different pattern in the O-glycosylation, which confirms that A. leucocarpus lectin recognizes conformation and, probably, distances among O-linked glycans moieties.  相似文献   

3.
A novel 114 kDa hexameric lectin was purified from the fruiting bodies of the mushroom Ganoderma lucidum. Biochemical characterization revealed it to be a glycoprotein having 9.3% neutral sugar and it showed hemagglutinating activity on pronase treated human erythrocytes. The lectin was stable in the pH range of 5–9 and temperature up to 50 °C. The hemagglutinating activity was inhibited by glycoproteins that possessed N-as well as O-linked glycans. Chemical modification of the G. lucidum lectin revealed contribution of tryptophan and lysine to binding activity. The thermodynamics of binding of bi- and triantennary N-glycans to G. lucidum lectin was studied by spectrofluorimetry. The lectin showed very high affinity for asialo N-linked triantenary glycan and a preference for asialo glycans over sialylated glycans. The binding was accompanied with a large negative change in enthalpy as well as entropy, indicating primarily involvement of polar hydrogen, van der Waals and hydrophobic interactions in the binding.  相似文献   

4.
A novel 114 kDa hexameric lectin was purified from the fruiting bodies of the mushroom Ganoderma lucidum. Biochemical characterization revealed it to be a glycoprotein having 9.3% neutral sugar and it showed hemagglutinating activity on pronase treated human erythrocytes. The lectin was stable in the pH range of 5-9 and temperature up to 50 degrees C. The hemagglutinating activity was inhibited by glycoproteins that possessed N-as well as O-linked glycans. Chemical modification of the G. lucidum lectin revealed contribution of tryptophan and lysine to binding activity. The thermodynamics of binding of bi- and triantennary N-glycans to G. lucidum lectin was studied by spectrofluorimetry. The lectin showed very high affinity for asialo N-linked triantennary glycan and a preference for asialo glycans over sialylated glycans. The binding was accompanied with a large negative change in enthalpy as well as entropy, indicating primarily involvement of polar hydrogen, van der Waals and hydrophobic interactions in the binding.  相似文献   

5.
Bovine binucleate trophoblast giant cells (BNCs) produce large amounts of PAS-positive cytoplasmic granules. After fusion of BNCs with uterine epithelial cells, the contents of these granules are released into the maternal stroma which underlies the uterine epithelium. Histochemically, the granules can be labeled with N-acetylgalactosamine-specific lectins ( Dolichos biflorus, Vicia villosa, and Wisteria floribunda agglutinins) and with Phaseolus vulgaris leucoagglutinin. In this study, we used lectin western blot analysis of proteins from fetal cotyledons to characterize the lectin binding glycoproteins. Lectin western blots showed several bands. A main band of approximately 65 kDa was identified as pregnancy-associated glycoproteins (PAGs) and a double band at 34-35 kDa as prolactin-related protein-I (PRP-I) by their crossreactivity with specific antisera. Enzymatic cleavage of N-linked glycans with peptide- N-glycanase F abolished the lectin binding to PRP and PAGs in western blots, revealing that the lectins bound to asparagine-linked glycans. The high specificity of the lectins was used for the enrichment of PRP-I and PAGs from placental cotyledons with Vicia villosa lectin affinity chromatography. The occurrence of the relatively uncommon asparagine-linked N-acetylgalactosaminyl glycans on secretory proteins of the BNCs suggests a functional role of this specific glycosylation pattern.  相似文献   

6.
A collection of Caenorhabditis elegans mutants that show ectopic surface lectin binding (Srf mutants) was analyzed to determine the biochemical basis for this phenotype. This analysis involved selective removal or labeling of surface components, specific labeling of surface glycans, and fractionation of total protein with subsequent detection of wheat germ agglutinin (WGA) binding proteins. Wild-type and mutant nematodes showed no differences in their profiles of extractable surface glycoproteins or total WGA-binding proteins, suggesting that the ectopic lectin binding does not result from the novel expression of surface glycans. Instead, these results support a model in which ectopic lectin binding results from an unmasking of glycosylated components present in the insoluble cuticle matrix of wild-type animals. To explain the multiple internal defects found in some surface mutants, we propose that these mutants have a basic defect in protein processing. This defect would interfere with the expression of the postulated masking protein(s), as well as other proteins required for normal development.  相似文献   

7.
For many years, molecular interactions with vascular endothelium have been studied in vitro on cultured endothelial cells. Yet, it is clear that the different environmental conditions in vivo vs. in vitro may cause phenotypic drift and altered expression of cell surface molecules. In this study, we identify several endothelial surface proteins of similar apparent molecular mass by radioiodination of cultured microvascular cells and by intravascular radioiodination of rat heart endothelium in situ. The radioiodinated surface polypeptides detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (followed by autoradiography) were subjected to lectin affinity chromatography in order to provide an additional screen for identifying common surface glycoproteins and a means for partial characterization of their glycans. With a battery of 18 lectins, seven major (gp140, gp120, gp100, gp85, gp75, gp60, gp47) and 6 minor (gp330, gp300, gp180, gp160, gp150, gp42) glycoproteins were identified on the cultured cells each with a different lectin binding profile. The lectin binding profiles of many endothelial glycoproteins in situ were similar to those of their counterparts in culture. A common set of seven major glycoproteins with the same apparent molecular masses was found in situ as well as in vitro. These common glycoproteins were characterized further using both sialidase digestion and sequential lectin affinity chromatography of cell lysates. Most of the glycoproteins appear to have both complex-type N-linked and O-linked glycans except for gp60 with only O-linked glycans, gp47 with only complex N-linked sugars, and gp42 with only simple N-linked sugars. A subset of sialoglycoproteins (gp140, gp120, gp100, gp60, gp47) was identified. One of them, gp120, is podocalyxin based on immunoprecipitation with specific antiserum and another one, gp60, is a recently identified albumin binding protein on the surface of cultured microvascular endothelial cells. This study shows that gp60 is indeed present on the surface of endothelium in situ and that it is a sialoglycoprotein with typical O-linked glycans. It is apparent that the continuous type of microvascular endothelium can indeed express in culture and in situ a common set of major glycoproteins.  相似文献   

8.
Normal baby hamster kidney (BHK) fibroblasts and ricin-resistant (RicR) mutants of BHK cells derived from them were labelled metabolically with [3H]mannose or [3H]fucose. Glycopeptides obtained by digestion of disrupted cells with Pronase were separated by affinity chromatography on concanavalin A-Sepharose. In the normal BHK cells major glycopeptide fractions were obtained consisting of tetra- and tri-antennary sialylated complex glycans, bi-antennary sialylated glycans, and neutral oligomannosidic chains. The majority of bi-antennary chains were shown to contain a fucosyl-(alpha 1-6)-N-acetylglucosaminyl sequence in the core region by their ability to bind to a lentil lectin affinity column. All of the mutant cell lines examined were found to accumulate oligomannosidic glycans in cellular glycoproteins: complex sialylated glycans were either absent or greatly reduced in amount. Analysis of fractions isolated from concanavalin A-Sepharose by Bio-Gel P-4 chromatography and glycosidase degradation indicated that the glycans accumulating in RicR14 cells have the general structure: (formula; see text) and derivatives having fewer alpha-mannosyl units. We have also analysed the glycopeptides released by trypsin treatment from the surface of the normal and mutant cells, as well as those obtained by proteolysis of fibronectin isolated from the medium. The glycopeptide profiles of the cell-surface-derived material and of fibronectin showed for the mutant cells a marked accumulation of oligomannosidic chains at the expense of complex oligosaccharide chains. Hence, the alterations in glycan structure detected in bulk cellular glycoproteins of RicR cells are expressed also in cell surface glycoproteins and in fibronectin, a secreted glycoprotein.  相似文献   

9.
10.
The scavenger receptor C-type lectin (SRCL) is a glycan-binding receptor that has the capacity to mediate endocytosis of glycoproteins carrying terminal Lewis(x) groups (Galβ1-4(Fucα1-3)GlcNAc). A screen for glycoprotein ligands for SRCL using affinity chromatography on immobilized SRCL followed by mass spectrometry-based proteomic analysis revealed that soluble glycoproteins from secondary granules of neutrophils, including lactoferrin and matrix metalloproteinases 8 and 9, are major ligands. Binding competition and surface plasmon resonance analysis showed affinities in the low micromolar range. Comparison of SRCL binding to neutrophil and milk lactoferrin indicates that the binding is dependent on cell-specific glycosylation in the neutrophils, as the milk form of the glycoprotein is a much poorer ligand. Binding to neutrophil glycoproteins is fucose-dependent, and mass spectrometry-based glycomic analysis of neutrophil and milk lactoferrin was used to establish a correlation between high affinity binding to SRCL and the presence of multiple clustered terminal Lewis(x) groups on a heterogeneous mixture of branched glycans, some with poly N-acetyllactosamine extensions. The ability of SRCL to mediate uptake of neutrophil lactoferrin was confirmed using fibroblasts transfected with SRCL. The common presence of Lewis(x) groups in granule protein glycans can thus target granule proteins for clearance by SRCL. PCR and immunohistochemical analysis confirm that SRCL is widely expressed on endothelial cells and thus represents a distributed system that could scavenge released neutrophil glycoproteins both locally at sites of inflammation or systemically when they are released in the circulation.  相似文献   

11.
The affinity interactions of Concanavalin A (Con A) with various saccharide oligomers (dextrins, dextrans, and selected N-linked glycans from various glycoproteins) have been investigated through a capillary electrophoresis approach. Con A has shown a notable binding discrimination between the α-1,6-linked dextran and α-1,4-linked dextrin oligomers. Both the binding capacity and binding discrimination appear to decrease with an increase in sugar chainlength. While the core structure of N-linked glycans is deemed to be responsible for the overall binding of various glycans to Con A, the presence of mannose units at the non-reducing ends was found to be very beneficial to the affinity interaction with Con A. Finally, a connection between the glycan–lectin interaction and glycoprotein–lectin interaction has also been suggested.  相似文献   

12.
In mammals, clearance of desialylated serum glycoproteins to the liver is mediated by a galactose-specific hepatic lectin, the 'asialoglycoprotein receptor'. In humans, serum glycoprotein glycans are usually capped with sialic acid, which protects these proteins against hepatic uptake. However, in most other species, an additional noncharged terminal element with the structure Galalpha1-->3Galbeta1-->4R is present on glycoprotein glycans. To investigate if alpha3-galactosylated glycoproteins, just like desialylated glycoproteins, could be cleared by the hepatic lectin, the affinities of alpha3-galactosylated compounds towards this lectin were determined using an in vitro inhibition assay, and were compared with those of the parent compounds terminating in Galbeta1-->4R. Diantennary, triantennary and tetraantennary oligosaccharides that form part of N-glycans were alpha3-galactosylated to completion by use of recombinant bovine alpha3-galactosyltransferase. Similarly, desialylated alpha1-acid glycoprotein (orosomucoid) was alpha3-galactosylated in vitro. The alpha3-galactosylation of a branched, Galbeta1-->4-terminated oligosaccharide lowered its affinity for the membrane-bound lectin on whole rat hepatocytes 50-250-fold, and for the detergent-solubilized hepatic lectin 7-50-fold. In contrast, alpha3-galactosylation of asialo-alpha1-acid glycoprotein caused only a minor decrease in affinity, increasing the IC50 from 5 to 15 nM. Fully alpha3-galactosylated alpha1-acid glycoprotein, intravenously injected into the mouse, was rapidly cleared from the circulation, with a clearance rate close to that of asialo-alpha1-acid glycoprotein (t1/2 of 0.42 min vs. 0.95 min). Its uptake was efficiently inhibited by pre-injection of an excess asialo-fetuin. Organ distribution analysis showed that the injected alpha1-acid glycoprotein accumulated predominantly in the liver. Taken together, these observations suggest that serum glycoproteins that are heavily alpha3-galactosylated will be rapidly cleared from the bloodstream via the hepatic lectin. It is suggested that glycosyltransferase expression in murine hepatocytes is tightly regulated in order to prevent undesired uptake of hepatocyte-derived, circulating glycoproteins.  相似文献   

13.
A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.  相似文献   

14.
A lectin with strong mitogenic activity towards human peripheral blood mononuclear cells (PBMCs) and cytotoxic effect on human ovarian cancer cells has been purified from the mycelium of a phytopathogenic fungus, Rhizoctonia bataticola, using ion exchange chromatography and affinity chromatography on asialofetuin-Sepharose. The lectin, termed RBL, is a tetramer of 11-kDa subunits and has unique amino acid sequence at its blocked N-terminus. The purified RBL was blood group nonspecific and its hemagglutination activity was inhibited by mucin (porcine stomach), fetuin (fetal calf serum) and asialofetuin. Glycan array analysis revealed high affinity binding of RBL towards N-glycans and also the glycoproteins containing complex N-glycan chains. Interestingly, the lectin showed high affinity for glycans which are part of ovarian cancer marker CA125, a high molecular weight mucin containing high mannose and complex bisecting type N-linked glycans as well core 1 and 2 type O-glycans. RBL bound to human PBMCs eliciting strong mitogenic response, which could be blocked by mucin, fetuin and asialofetuin demonstrating the carbohydrate-mediated interaction with the cells. Analysis of the kinetics of binding of RBL to PBMCs revealed a delayed mitogenic response indicating a different signaling pathway compared to phytohemagglutinin-L. RBL had a significant cytotoxic effect on human ovarian cancer cell line, PA-1.  相似文献   

15.
As one of the most important post‐translational modifications, the discovery, isolation, and identification of glycoproteins are becoming increasingly important. In this study, a Con A‐magnetic particle conjugate‐based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and hepatocellular carcinoma (HCC) case sera. The isolated glycoproteins and their N‐linked glycans were identified by LC‐ESI‐MS/MS and MALDI‐TOF/TOF‐MS, respectively. A total of 93 glycoproteins from the healthy donors and 85 glycoproteins from the HCC cases were identified. There were 34 different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34). Twenty‐eight glycans from the healthy donors and 30 glycans from the HCC cases were detected and there were 22 different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Among these glycoproteins, 50 were known to be N‐linked glycoproteins and three novel glycopeptides from two predicted potential glycoproteins were discovered. Moreover, lectin blotting, Western blotting and lectin/glyco‐antibody microarrays were applied to definitely elucidate the change of selective protein expressions and their glycosylation levels, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.  相似文献   

16.
A new procedure for isolating a L-fucose-specific lectin from the mushroom Aleuria aurantia is described. The fine specificity of the purified lectin was determined by inhibition of agglutination of human red blood cells by various glycopeptides and oligosaccharides, and by studying the affinity of the immobilized lectin towards glycopeptides and oligosaccharides. Results of inhibition of hemagglutination showed that the lectin presents the highest affinity towards alpha-(1----6)-linked L-fucosyl groups. Immobilized Aleuria aurantia agglutinin interacts strongly with all N-glycosylpeptides or related glycans possessing an alpha-L-fucopyranosyl group linked to O-6 of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl residue involved in the glycosylamine linkage. In addition, presence of alpha-(1----3)-linked L-fucosyl groups greatly enhances the affinity of the lectin for the alpha-(1----6)-L-fucosylated glycans. The immobilized Aleuria lectin is a powerful tool for the resolution of the microheterogeneity of L-fucosylated glycopeptides and glycans of the N-acetyl-lactosamine type.  相似文献   

17.
Human colon carcinoma cell fucosyltransferase (FT) in contrast to the FTs of several human cancer cell lines, utilized GlcNAcbeta1,4GlcNAcbeta-O-Bn as an acceptor, the product being resistant to alpha1,6-L-Fucosidase and its formation being completely inhibited by LacNAc Type 2 acceptors. Further, this enzyme was twofold active towards the asialo agalacto glycopeptide as compared to the parent asialoglycopeptide. Only 60% of the GlcNAc moieties were released from [14C]fucosylated asialo agalacto triantennary glycopeptide by jack bean beta-N-acetylhexosaminidase. These alpha1,3-L-fucosylating activities on multiterminal GlcNAc residues and chitobiose were further examined by characterizing the products arising from fetuin triantennary and bovine IgG diantennary glycopeptides and their exoglycosidase-modified derivatives using lectin affinity chromatography. Utilization of [14C]fucosylated glycopeptides with cloned FTs indicated that Lens culinaris lectin and Aleuria aurantia lectin (AAL) required, respectively, the diantennary backbone and the chitobiose core alpha1,6-fucosyl residue for binding. The outer core alpha1,3- but not the alpha-1,2-fucosyl residues decreased the binding affinity of AAL. The AAL-binding fraction from [14C]fucosylated asialo fetuin, using colon carcinoma cell extract, contained 60% Endo F/PNGaseF resistant chains. Similarly AAL-binding species from [14C]fucosylated TFA-treated bovine IgG using colon carcinoma cell extract showed significant resistance to endo F/PNGaseF. However, no such resistance was found with the corresponding AAL non- and weak-binding species. Thus colon carcinoma cells have the capacity to fucosylate the chitobiose core in glycoproteins, and this alpha1,3-L-fucosylation is apparently responsible for the AAL binding of glycoproteins. A cloned FT VI was found to be very similar to this enzyme in acceptor substrate specificities. The colon cancer cell FT thus exhibits four catalytic roles, i.e., alpha1,3-L-fucosylation of: (a) Galbeta1,4GlcNAcbeta-; (b) multiterminal GlcNAc units in complex type chain; (c) the inner core chitobiose of glycopeptides and glycoproteins; and (d) the nonreducing terminal chiotobiose unit.  相似文献   

18.
Glucosidase II (GII) sequentially removes the two innermost glucose residues from the glycan (Glc(3)Man(9)GlcNAc(2)) transferred to proteins. GII also participates in cycles involving the lectin/chaperones calnexin (CNX) and calreticulin (CRT) as it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase (UGGT). GII is a heterodimer in which the α subunit (GIIα) bears the active site, and the β subunit (GIIβ) modulates GIIα activity through its C-terminal mannose 6-phosphate receptor homologous (MRH) domain. Here we report that, as already described in cell-free assays, in live Schizosaccharomyces pombe cells a decrease in the number of mannoses in the glycan results in decreased GII activity. Contrary to previously reported cell-free experiments, however, no such effect was observed in vivo for UGGT. We propose that endoplasmic reticulum α-mannosidase-mediated N-glycan demannosylation of misfolded/slow-folding glycoproteins may favor their interaction with the lectin/chaperone CNX present in S. pombe by prolonging the half-lives of the monoglucosylated glycans (S. pombe lacks CRT). Moreover, we show that even N-glycans bearing five mannoses may interact in vivo with the GIIβ MRH domain and that the N-terminal GIIβ G2B domain is involved in the GIIα-GIIβ interaction. Finally, we report that protists that transfer glycans with low mannose content to proteins have nevertheless conserved the possibility of displaying relatively long-lived monoglucosylated glycans by expressing GIIβ MRH domains with a higher specificity for glycans with high mannose content.  相似文献   

19.
This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The need for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography.  相似文献   

20.
Pancreatic cancer is now the fourth leading cause of cancer deaths in the United States, and it is associated with an alarmingly low 5-year survival rate of 5%. However, a patient's prognosis is considerably improved when the malignant lesions are identified at an early stage of the disease and removed by surgical resection. Unfortunately, the absence of a practical screening strategy and clinical diagnostic test for identifying premalignant lesions within the pancreas often prevents early detection of pancreatic cancer. To aid in the development of a molecular screening system for early detection of the disease, we have performed glycomic and glycoproteomic profiling experiments on 21 pancreatic cyst fluid samples, including fluids from mucinous cystic neoplasms and intraductal papillary mucinous neoplasms, two types of mucinous cysts that are considered high risk to undergo malignant transformation. A total of 80 asparagine-linked (N-linked) glycans, including high mannose and complex structures, were identified. Of special interest was a series of complex N-linked glycans containing two to six fucose residues, located predominantly as substituents on β-lactosamine extensions. Following the observation of these "hyperfucosylated" glycans, bottom-up proteomics experiments utilizing a label-free quantitative approach were applied to the investigation of two sets of tryptically digested proteins derived from the cyst fluids: 1) all soluble proteins in the raw samples and 2) a subproteome of the soluble cyst fluid proteins that were selectively enriched for fucosylation through the use of surface-immobilized Aleuria aurantia lectin. A comparative analysis of these two proteomic data sets identified glycoproteins that were significantly enriched by lectin affinity. Several candidate glycoproteins that appear hyperfucosylated were identified, including triacylglycerol lipase and pancreatic α-amylase, which were 20- and 22-fold more abundant, respectively, following A. aurantia lectin enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号