首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物膜在空间区域上不仅把细胞与外环境隔离开,而且在细胞内也起着隔离作用。膜在细胞内形成一个个小区域,使与某种机能有关的酶或酶系集中于一定的区域内,把细胞中不同的功能活动和代谢反应相互分开,这就是细胞内膜的区域化作用。细胞中机能与反应的区域化各种膜系细胞器是细胞内膜区域化的重要方式。线粒体的双层单位膜,内质网、高尔基体、溶酶体等的单层单位膜,以及双层单位膜构成的细胞核,可以把细胞中各种不同的功能活动分开。见下表。  相似文献   

2.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

3.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

4.
BcL2蛋白质家族——定位与转位   总被引:4,自引:0,他引:4  
Bcl-2蛋白质家族的抗凋亡和促凋亡成员,在线粒体水平上决定细胞的存活或死亡.在正常细胞中,这些成员呈现功能适应性的细胞内分布;抗凋亡成员主要定位于细胞内膜系特别是线粒体外膜上:但绝大多数促凋亡成员主要分布于细胞浆中.细胞接受死亡信号后,Bcl-2家族成员本身受到一系列的调节,如磷酸化、裂解、蛋白质-蛋白质相互作用等,结果之一是促凋亡成员发生细胞内定位的改变,从细胞浆转位于线粒体膜上,并引发线粒体功能异常及其内外膜间致凋亡因子的释放,最终导致细胞凋亡.  相似文献   

5.
脂质筏在信号转导中的作用   总被引:1,自引:0,他引:1  
霍海蓉  廖侃 《生命的化学》2003,23(6):433-435
细胞质膜对膜上受体的细胞外到细胞内的跨膜信号转导具有十分重要的意义。目前的研究表明膜上受体在介导跨膜信号转导时,通常是在细胞质膜上的胞膜窖和脂质筏结构中进行的。胞膜窖和脂质筏都是细胞膜上富含胆固醇和鞘磷脂的脂质有序结构域。其中,胞膜窖是一种有窖蛋白包被的特殊的脂质筏结构,通常在细胞膜上形成内陷的小窝。许多细胞膜上的受体都已经被发现位于胞膜窖和脂质筏中。同时,在脂质筏的胞质侧富集了大量的细胞内信号分子,这些信号分子集聚形成信号分子复合体,使得受体的细胞内结构域很容易就与大量的细胞内信号分子发生相互作用,为信号的起始和交叉作用提供了一个结构平台。  相似文献   

6.
杂交鹅掌楸体胚发生过程中ATP酶活性的超微细胞化学定位   总被引:2,自引:0,他引:2  
利用透射式电镜,通过胚性细胞的超微切片观察,对杂交鹅掌楸体细胞胚胎发生和发育过程中ATP酶活性进行了超微细胞化学定位.结果表明,非胚性细胞的质膜、液泡膜等膜系统当中存在ATP酶活性,质体、核膜、细胞壁以及细胞间隙上有少许沉积;早期胚性细胞ATP酶反应产物主要沉积于质膜、液泡膜上、淀粉粒、细胞壁加厚处;胚性细胞后期ATP酶活性从质膜逐渐转移入细胞内,细胞质、壁旁体、胞间连丝、细胞膜与细胞间隙、细胞核等处均有ATP酶活性反应.随着胚性细胞的发育及分裂,包裹细胞的厚壁、细胞核、核仁与染色质等处也出现ATP酶活性反应沉淀物.说明杂交鹅掌楸体细胞胚胎发生及发育过程中存在丰富的能量代谢.  相似文献   

7.
答:葡萄糖为非脂溶性的小分子物质,在小肠绒毛的上皮细胞膜上有运输葡萄糖的特异性的载体,在它的协助下,葡萄糖可由高浓度的肠腔一边通过小肠绒毛的上皮细胞膜进人低浓度的小肠绒毛的上皮细胞内,顺浓度梯度被吸收,这一过程不需要细胞的能量供给,所以为协助扩散。此外,小肠绒毛的上皮细胞还能逆着浓度梯度吸收葡萄糖。其机理为:葡萄糖还和Na“共用一个载体,同时从肠腔进人小肠绒毛的上皮细胞内,随后Na“和葡萄糖都从载体蛋白质分离,Na“再由销泵排出细胞外,保持了细胞内低浓度的Na”,从而使葡萄糖和Na”继续进入细胞,这一过…  相似文献   

8.
化学发光探针分子FCLA是一种海萤荧光素类似物分子,它可以选择性地与1O2及O2.反应产生化学发光,近年来已被成功用于在组织水平上进行光动力学和声动力学的肿瘤诊断中。但是FCLA在生物样品中能否进入细胞以及在细胞内的定位等问题目前尚不清楚。本文中报道利用激光共焦扫描显微镜进行FCLA和HpD的跨膜效率以及细胞内定位的形态学研究初步结果。结果表明,在37℃培养箱中用完全培养液进行培养时发现,HpD和FCLA都可以有效地跨膜,并定位在细胞质中。虽然FCLA与HpD的分子量大小相近,但是其进入肿瘤细胞的效率却并不相同。与HpD相比FCLA更容易进入细胞,对细胞没有明显的毒性。实验中未观测到FCLA和HpD进入细胞核的证据。本研究为利用1O2和O2.探针FCLA动态观测细胞内1O2或O2.的产生和定位建立了实验基础,并将推动在细胞或亚细胞水平上进行光动力学机制以及光敏过程引起细胞凋亡机制的研究。  相似文献   

9.
细胞是结构与功能的统一体,细胞内繁复的生化反应通过膜性与非膜性细胞器组织起来,而细胞内亚结构之间又通过膜运输等方式进一步组织成一个整体。对细胞内组织原则的探索一直是细胞生物学领域的前沿方向,每一个对细胞组织方式的新认识,都会催生大量的新发现。在这个综述系列中,中国科学院生物物理研究所的胡俊杰研究员和清华大学的李丕龙教授及其共同作者概述了细胞器互作及相分离这两个近年来细胞组织方式方向上的重要的概念性突破,并探讨了这些突破对细胞生物学领域的可能影响。  相似文献   

10.
西瓜柱头乳突细胞分泌活动期间ATP酶活性超微结构定位   总被引:5,自引:1,他引:4  
研究了西瓜柱头乳突细胞ATP酶活性的超微结构定位。分泌活动旺盛的细胞中,质膜、内质网、质体的内部片层、胞间连丝以及多数大液泡的膜上面都有大量ATP酶活性反应产物,线粒体和小泡上只有少量酶活性反应产物。分泌活动停止后处于解体状态的细胞内,反应产物主要定位于液泡膜上。分泌旺盛的乳突细胞质膜具有高的ATP酶活性表明分泌物运出需要大量能量,内质网ATP酶活性强可能意味着该细胞参与分泌物合成。  相似文献   

11.
细胞自噬(autophagy)是生物体广泛存在的细胞内自主降解过程。该过程通过自我吞噬细胞质成分和细胞器形成具有双层膜结构的自噬体, 与溶酶体融合实现细胞内物质的循环利用。细胞自噬在饥饿、 缺氧、 内质网胁迫、 病原入侵、 蛋白聚集等不良环境条件下实现自我挽救, 而细胞自噬的大量发生也是程序性细胞死亡(PCD)的启动和执行者之一。目前人们对自噬体分子组装和自噬发生的分子通路已有较深入的了解, 但仍然在很多重要问题上难以达成共识。本文结合我们的研究进展, 对昆虫细胞自噬的生物学意义和自噬体膜的来源问题进行综述和探讨。昆虫在营养相对匮乏的情况下发生低水平自噬(常态自噬), 用于维持细胞内的新陈代谢和继续生存的需要。昆虫在摄食阶段受到过度饥饿的刺激, 在变态发育时期受到蜕皮激素(20E)的诱导, 幼虫组织细胞发生高水平自噬和凋亡(apoptosis), 细胞表现为不可逆死亡, 过度饥饿导致幼虫发育迟缓或者死亡, 而20E导致幼虫蜕皮和幼虫组织退化或消亡。不同于酵母和高等动物细胞中的深入研究, 病原入侵是否和如何诱导昆虫细胞发生自噬, 目前尚缺乏足够的文献依据, 值得深入探讨。几乎所有的细胞器(内质网、 高尔基体、 线粒体)膜都可能是自噬体膜的来源, 这一问题在昆虫中也有待进一步诠释。  相似文献   

12.
细胞为了维持正常的生理活动进化出膜系统,使各种各样的活动能在特定的空间、时间上高效有序的发生。膜系统参与物质运输、信号传递、能量代谢等过程已被广泛了解,但与无膜区室组装和功能相关的分子细节尚未研究透彻。生物大分子通过相分离在细胞内形成多种无膜区室,如核仁、中心体、应激颗粒等,这些无膜区室被统称为生物分子凝聚体。作为一种细胞生化反应的聚集分离机制,相分离在自然界中普遍存在,并广泛参与信号转导、基因转录调控等多种重要的生理过程。而异常的相分离与许多人类疾病密切相关,如神经退行性疾病、癌症及传染性疾病等。通过介绍相分离形成的细胞结构及功能、相分离发生的机制,进一步阐述相分离在疾病发生发展中的作用。  相似文献   

13.
钙离子(Ca2+)是重要的第二信使,通过与效应蛋白的结合和解离,以及在不同细胞器之间的穿梭运动而精确调控细胞活动,参与多种重要生命过程。细胞内具有精确调节Ca2+时空分布的调控系统。在静息状态下,细胞内的游离Ca2+浓度约为100 nmol/L;而当细胞受到信号刺激后,胞内的Ca2+浓度可上升至1000 nmol/L甚至更高。细胞中存在多种跨膜运送Ca2+的膜蛋白,以精确调节Ca2+浓度的时空动态变化,其中,细胞质膜上的多种Ca2+通道(包括电压门控通道、受体门控通道、储存控制通道等),以及内质网/肌质网和线粒体等胞内"钙库"膜上的雷诺丁受体、三磷酸肌醇受体等膜蛋白复合物,均可提升胞内Ca2+浓度,而细胞质膜上的钠钙交换体、质膜Ca2+-ATP酶、"钙库"膜上的内质网Ca2+-ATP酶、线粒体Ca2+单向转运体等,可将Ca2+浓度降低至静息态水平。质膜钙ATP酶是向细胞外运送Ca2+的关键膜蛋白,本文将对其结构、功能及其酶活性的调控机制做一简要综述。  相似文献   

14.
花粉蛋白诱导胞内钙离子信号波动的研究   总被引:4,自引:0,他引:4  
钙离子是细胞生命活动中的一个重要的调节因子,在细胞对外界刺激产生反应以及细胞死亡过程中,它扮演着重要的角色。天花粉蛋白是一种抗肿瘤药物,对绒毛膜上皮癌细胞的杀伤力特别强。通过对绒毛膜上皮癌细胞内钙离子进行fluo-3/AM荧光染色发现,天花粉蛋白的加入能诱导绒毛膜上皮癌细胞内钙离子浓度的增加。经天花粉蛋白作用24小时后,被天花粉蛋白损伤的绒毛膜上皮癌细胞内钙离子的浓度比正常细胞要高得多。在开花粉蛋  相似文献   

15.
Shewanella oneidensis MR-1是一种模式金属还原菌,它能够在厌氧条件下,将多种金属化合物和人工合成染料等作为电子受体还原代谢。因此,该菌常常被用于生态修复等研究。厌氧条件下,S.oneidensis MR-1能够将细胞质内或细胞内膜产生的电子通过定位于细胞内膜、细胞膜周质和细胞外膜上的c-血红色素蛋白或还原酶所组成的具有多样性的电子传递系统,最终传递到存在于细菌细胞外环境中的电子受体。通过对多种电子传递过程的介绍,进一步阐明其对污染物修复和纳米材料合成的机理,从而为未来对该类微生物的利用和开发提供更为充分的理论依据。  相似文献   

16.
采用磷酸铅沉淀的细胞化学方法,对番茄子叶细胞内三磷酸腺苷酶(ATPase)活性进行了超微结构的定位,并研究了番茄幼苗在遭受冷害过程中 ATPase 活性的变化。结果指出:1.在28℃下萌发生长的番茄幼苗子叶细胞内的 ATPase 活性被定位于质膜、胞间连丝、核仁及核的染色质、叶绿体片层膜、部分细胞壁以及细胞间隙周围的细胞壁表面及其内含物上。2.当番茄幼苗遭受12小时冷(5℃)处理时,质膜、细胞壁及细胞间隙内的 ATPase 活性开始明显地降低,但细胞核和叶绿体片层膜上的 ATPase 仍保持高的活性反应。在冷处理24小时后,质膜与细胞壁的 ATPase 活性几乎完全丧失,而细胞核和叶绿体片层膜的 ATPase 活性仅开始减弱。这种情况揭示,冷害可能首先损伤细胞表面(质膜与壁)的 ATPase 活性。3.讨论了细胞间隙作为养料运输通道的作用以及冷害的一种可能过程与机理。关于高等植物细胞内三磷酸腺苷酶(ATPase)活性的细胞化学的超微结构定位,以往主要集中于维管束的韧皮部和根尖细胞的研究。不久前,我们报道了冬小麦分蘖节细胞内 ATPase 活性的细胞化学定位叫,初步揭示 ATPase 的活性变化与植物抗寒性有密切关系。番茄等喜温植物在冷害中的细胞超微结构,呼吸作用和一些酶(如过氧化物酶,过氧化氢酶及吲(口朶)乙酸氧化酶)活性的变化,已有一些报道,提出膜可能是冷害损伤的最初部位。然而冷害究竟首先是损伤膜的拟脂成分,还是损伤膜的蛋白质成分,或者是二者同时遭到破坏,目前的实验证据还十分缺乏。ATPase 是膜束缚的一种功能性蛋白质,我们试图通过探索它在寒害中的活性变化,为阐明寒害机理提供实验依据。  相似文献   

17.
研究了西瓜柱头乳突细胞ATP酶活性的超微结构定位。分泌活动旺盛的细胞中,质膜、内质网、质体的内部片层、胞间连丝以及多数大液泡的膜上面都有大量ATP 酶活性反应产物,线粒体和小泡上只有少量酶活性反应产物。分泌活动停止后处于解体状态的细胞内,反应产物主要定位于液泡膜上。分泌旺盛的乳突细胞质膜具有高的ATP酶活性表明分泌物运出需要大量能量,内质网 ATP 酶活性强可能意味着该细胞器参与分泌物合成。  相似文献   

18.
锌转运蛋白基因研究进展   总被引:1,自引:1,他引:0  
锌作为一种重要的微量元素参与了植物体内广泛的生理和生化过程,本文详细介绍了涉及Zn^2+吸收转运的ZIP基因家族(ZRT/IRT相关蛋白)和CDF(Cation diffusion facilitator)家族。ZIP家族转运蛋白主要负责将Zn^2+等二价阳离子跨膜转运进细胞内,以完成细胞内多种生理生化反应。CDF家族转运蛋白主要负责将过量Zn^2+运出细胞,或者将细胞内过量Zn^2+进行区室化隔离,降低Zn^2+对细胞的危害作用。ZIP家族转运蛋白和CDF家族转运蛋白的相互协调使得Zn^2+在细胞和有机体水平上维持着稳态,进而为细胞内各种生理生化反应的进行供一种保障机制。  相似文献   

19.
封面说明     
《遗传》2019,(6)
<正>内吞循环运输是细胞中高度动态的一类生物学过程,与胞吐运输一起协同维持细胞质膜上磷脂和蛋白等大分子的稳态水平。循环运输的失调会导致信号受体和离子通道等功能膜蛋白的胞内异常积累以及质膜功能受损,诱发诸如肿瘤和代谢异常等疾病的发生。本期林珑等"细胞内  相似文献   

20.
配体与膜受体结合可启动细胞信息传递通路,激活细胞并产生生物学效应。应用共聚焦激光扫描显微术,流式细胞分光光度计,生物活性测量等技术,研究MA与巨噬细胞膜受体结合后,膜下肌动蛋白丝构筑和含量随时间变化,以及细胞热能量改变。结果是ConA结合巨噬细胞膜受体后,膜下肌动蛋白多聚化加快,构筑成细胞内F-actin立体空间网络,F-actin含量增加具有时间相关性,细胞热能量增加。巨噬细胞内这些变化提示ConA通过膜受体诱导膜下肌动蛋白多聚化和构筑过程有信息传递和激活细胞等重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号