首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.  相似文献   

2.
Summary A system is described in which spontaneous and chemically-induced mitotic and meiotic hyperploidy can be assayed in the same diploid culture of Saccharomyces cerevisiae. Monitoring gene dosage changes at two loci on chromosome VIII, the test utilizes a leaky temperature-sensitive allele arg4-8 and low level copper resistance conferred by the single copy allele cup1 s. An extra chromosome VIII provides simultaneous increased dosage for both genes, resulting in colonies that are both prototrophic for arginine at 30° C and copper resistant. During mitotic cell divisions in diploids, spontaneous chromosome VIII hyperploids (trisomes and tetrasomes) occur at a frequency of 6.4×10-6 per viable cell. Among ascospores, the spontaneous chromosome VIII disome frequency is 5.5×10-6 per viable spore. The tubulin-binding reagent methyl benzimidazol-2-yl carbamate (MBC) elicits enhanced levels of mitotic and meiotic aneuploidy relative to control levels. The system represents a novel model for examining chromosome behavior during mitosis and meiosis and provides a sensitive and quantifiable procedure for examining chemically induced aneuploidy.  相似文献   

3.
4.
The utility of plant test systems for detecting chemically induced aneuploidy was evaluated by using papers published in peer-reviewed journals. A total of 147 papers were provided to the group by the Environmental Mutagen Information Center. Based on the criteria established by the Gene-Tox Committee (Waters and Auletta, 1981), 22 papers were selected for in-depth review. Only those papers listing additional, missing, or lagging chromosomes in the meiotic or mitotic cells were included in this review. Although most plant test systems may be developed to utilize either mitotic or meiotic cells for cytogenetic analysis, only a few have been employed for this purpose. In this review, Allium cepa was found to be the most commonly used test system. Other species used less frequently were Vicia faba, Hordeum vulgare, Sorgham vulgare, and Pennisetum americanum. None of the plant test systems have been sufficiently utilized to warrant judgment for its sensitivity and specificity for detecting induced aneuploidy. A suggested protocol for detecting chromosomal malsegregation in meiotic or mitotic cells is presented. Further development and utilization of plant tissue culture techniques and morphological markers identifiable in the seedling stages is recommended for detecting chemically induced aneuploidy.  相似文献   

5.
6.
Summary Mitotic gene conversion was induced with a variety of chemical mutagens in a double heteroallelic strain of Saccharomyces cerevisiae. Cells were treated with various mutagens and plated immediately onto selective and nonselective growth medium or else they were subject before plating to liquid holding in buffer for various lengths of time. In respiratory competent cells liquid holding caused a decrease in lethality and in conversion frequencies. Respiratory deficient cells, unable to use a non-fermentable substrate as an energy source, behaved different. Untreated cells started to die in buffer after two days of storage, and moreover, there was a considerable increase in potential convertants i.e. cells giving rise to gene convertants when plated on selective growth media. Respiratory deficient cells treated with various chemical mutagens were still more sensitive to liquid holding. After low, sublethal doses cells started to die after one day of liquid holding already and when plated on media selective for convertants, showed an increasing frequency of gene convertants. Addition of very low concentrations of glucose to the liquid holding buffer post-poned the lethal and convertogenic effects. Higher concentrations of glucose completely abolished sensitivity to liquid holding-induced lethality and genetic alterations. The results are interpreted to mean that in respiratory deficient cells no repair activities are possible to an accumulation of spontaneous lethal damage and genetic alterations which are expressed as gene conversion when an energy source becomes available. Such a repairless condition causes an increased sensitivity to genetically active agents, and provides a useful system to detect genetic effects of slowly reacting agents.  相似文献   

7.
In most eukaryotic organisms, recombination events leading to exchanges between homologous chromosomes link the homologs in a manner that allows their proper attachment to the meiotic spindle. In the yeast Saccharomyces cerevisiae these exchanges are initiated in early prophase as double-strand breaks in the DNA. These breaks are processed through a series of intermediates to yield mature crossovers late in prophase. The following experiments were designed to monitor the appearance of the earliest recombinant DNA strands formed in this process. A polymerase chain reaction assay was devised that allows the detection of recombinant strands at a known initiation site for meiotic recombination. The time and rate of appearance of recombinant strands was found to coincide with commitment to recombination, demonstrating that DNA strands bearing sequences from both parental chromosomes are rapidly formed after the initiation of meiotic recombination.  相似文献   

8.
We describe a general physical method for detecting the heteroduplex DNA that is formed as an intermediate in meiotic recombination in the yeast Saccharomyces cerevisiae. We use this method to study the kinetic relationship between the formation of heteroduplex DNA and other meiotic events. We show that strains with the rad50, but not the rad52, mutation are defective in heteroduplex formation. We also demonstrate that, although cruciform structures can be formed in vivo as a consequence of heteroduplex formation between DNA strands that contain different palindromic insertions, small palindromic sequences in homoduplex DNA are rarely extruded into the cruciform conformation.  相似文献   

9.
We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.  相似文献   

10.
Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.  相似文献   

11.
12.
13.
Summary A complete lack of noncomplementation was observed among 208 ad 2 mutants of yeast induced by HNO2 and 1-nitroso-imidazolidone-2. This result stresses the advantage of using efficient chemical mutagens such as the alkylating and deaminating agents used for the induction of mutants with a minimum of functional damage.  相似文献   

14.
15.
16.
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spo11 protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spo11 with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spo11 to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spo11.  相似文献   

17.
As a group, sex chromosome aneuploidies - the 47,XXY, 47,XYY, 47,XXX and 45,X conditions - constitute the most common class of chromosome abnormality in human live-births. Considerable attention has been given to the somatic abnormalities associated with these conditions, but less is known about their meiotic phenotypes; that is, how does sex chromosome imbalance influence the meiotic process. This has become more important with the advent of assisted reproductive technologies, because individuals previously thought to be infertile can now become biological parents. Indeed, there are several recent reports of successful pregnancies involving 47,XXY fathers, and suggestions that cryopreservation of ovarian tissue might impart fertility to at least some Turner syndrome individuals. Thus, the possible consequences of sex chromosome aneuploidy on meiotic chromosome segregation need to be explored.  相似文献   

18.
The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1p, a protein required for the programmed replication fork block (RFB) in the rDNA. We observed that the fob1 mutation alone significantly increased meiotic, but not mitotic, rDNA recombination, suggesting a meiosis-specific role for this protein. We found that meiotic cells with low polymerase alpha had decreased Sir2p binding and increased Spo11p-catalyzed double-strand DNA breaks in the rDNA. Furthermore, meiotic crossover interference in the rDNA is absent. These results suggest that the hyper-Rec phenotypes resulting from low levels of DNA polymerase alpha in mitosis and meiosis reflect two fundamentally different mechanisms: the increased mitotic recombination is likely due to increased double-strand DNA breaks (DSBs) resulting from Fob1p-independent stalled replication forks, whereas the hyper-Rec meiotic phenotype results from increased levels of Spo11-catalyzed DSBs in the rDNA.  相似文献   

19.
A V Stolbova 《Genetika》1987,23(8):1390-1398
This article continues the investigation of polyauxotrophic (PA) clones formed in early mitotic progeny of zygotes. Cloning and segregation analysis of PA progeny suggest an unusual state of diploid genome in these strains, which is expressed as elimination of the dominance effect of the wild allele and as suppression or conversion of either of two loci of mating type. In PA progeny, except for recombinant haploids, sporulating diploids and unstable clones were detected. The tetrad analysis of the diploids points to homozygotization for individual markers. Over-replication of diploid set of chromosomes, prior to meiosis, and replacement of the haploid nucleus (the product of meiosis) for the diploid nucleus may explain the appearance of sporulating segregants in the diploid meiotic progeny. Unstable segregants may be considered as heterokaryons with complex interaction of nuclei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号