首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Jaeschke  V B Schini  A Farhood 《Life sciences》1992,50(23):1797-1804
The potential role of nitric oxide (NO) and its reaction product with superoxide, peroxynitrite, was investigated in a model of hepatic ischemia-reperfusion injury in male Fischer rats in vivo. Pretreatment with the NO synthase inhibitor nitro-L-arginine (10 mg/kg) did neither affect the post-ischemic oxidant stress and liver injury during the initial reperfusion phase nor the subsequent infiltration of neutrophils into the liver and the later, neutrophil-induced injury phase. Furthermore, no evidence was found for a postischemic increase of the urinary excretion of nitrite, a stable oxidation metabolite of NO. In contrast, the administration of Salmonella enteritidis endotoxin (1 mg/kg) induced a significant diuresis in Fischer rats and an 800-fold enhancement of the urinary nitrite excretion. Nitro-L-arginine pretreatment inhibited the endotoxin-induced nitrite formation by 97%. Hepatic cGMP levels, as index of NO formation in the liver, were only increased significantly after endotoxin administration but not after ischemia and reperfusion. Our results provide no evidence for any enhanced generation of NO or peroxynitrite either systemically or locally during reperfusion and therefore it is unlikely that any of these metabolites are involved in the oxidant stress and liver injury during reperfusion after hepatic ischemia.  相似文献   

2.
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs) were co-cultured with endothelial cells (ECs) and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor) or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis) in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.  相似文献   

3.
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

4.
Endothelin (ET) receptor antagonism protects from ischemia-reperfusion injury. We hypothesized that the cardioprotective effect is related to nitric oxide (NO) bioavailability. Buffer-perfused rat and mouse hearts were subjected to ischemia and reperfusion. At the onset of ischemia, the rat hearts received vehicle, the dual endothelin type A/type B (ETA/ETB) receptor antagonist bosentan (10 microM), the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 100 microM), the combination of bosentan and L-NMMA or the combination of bosentan, L-NMMA, and the NO substrate L-arginine (1 mM). Hearts from wild-type and endothelial NO synthase (eNOS)-deficient mice received either vehicle or bosentan. Myocardial performance, endothelial function, NO outflow, and eNOS expression were monitored. Bosentan significantly improved myocardial function during reperfusion in rats and in wild-type mice, but not in eNOS-deficient mice. The functional protection afforded by bosentan was inhibited by L-NMMA, whereas it was restored by L-arginine. Myocardial expression of eNOS (immunoblotting) increased significantly in bosentan-treated rat hearts compared with vehicle hearts. Recovery of NO outflow during reperfusion was enhanced in the bosentan-treated rat heart. The endothelium-dependent vasodilator adenosine diphosphate increased coronary flow by 18 +/- 9% at the end of reperfusion in the bosentan group, whereas it reduced coronary flow by 7 +/- 5% in the vehicle group (P < 0.001). The response to the endothelium-independent dilator sodium nitroprusside was not different between the two groups. In conclusion, the dual ETA/ETB receptor antagonist bosentan preserved endothelial and cardiac contractile function during ischemia and reperfusion via a mechanism dependent on endothelial NO production.  相似文献   

5.
Role of nitric oxide in liver ischemia and reperfusion injury   总被引:5,自引:0,他引:5  
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h of reperfusion in wt mice while iNOS deficient mice exhibited substantial increases at 1 but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

6.
We previously reported that nitric oxide (NO) derived from endothelial NO synthase (NOS) increased endothelial prostacyclin (PGI(2)) production in rats subjected to hepatic ischemia-reperfusion (I/R). The present study was undertaken to determine whether neutrophil elastase (NE) decreases endothelial production of PGI(2), thereby contributing to the development of I/R-induced liver injury by decreasing hepatic tissue blood flow in rats. Hepatic tissue levels of 6-keto-PGF(1alpha), a stable metabolite of PGI(2), were transiently increased and peaked at 1 h after reperfusion, followed by a gradual decrease until 3 h after reperfusion. Sivelestat sodium hydrochloride and L-658,758, two NE inhibitors, reduced I/R-induced liver injury. These substances inhibited the decreases in hepatic tissue levels of 6-keto-PGF(1alpha) at 2 and 3 h after reperfusion but did not affect the levels at 1 h after reperfusion. These NE inhibitors significantly increased hepatic tissue blood flow from 1 to 3 h after reperfusion. Both hepatic I/R-induced increases in the accumulation of neutrophils and the microvascular permeability were inhibited by these two NE inhibitors. Protective effects induced by the two NE inhibitors were completely reversed by pretreatment with nitro-l-arginine methyl ester, an inhibitor of NOS, or indomethacin. Administration of iloprost, a stable derivative of PGI(2), produced effects similar to those induced by NE inhibitors. These observations strongly suggest that NE might play a critical role in the development of I/R-induced liver injury by decreasing endothelial production of NO and PGI(2), leading to a decrease in hepatic tissue blood flow resulting from inhibition of vasodilation and induction of activated neutrophil-induced microvascular injury.  相似文献   

7.
Nitric oxide synthase and postischemic liver injury   总被引:8,自引:0,他引:8  
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion.  相似文献   

8.
Accumulating evidence suggests that hyperbaric oxygen (HBO) stimulates neuronal nitric oxide (NO) synthase (NOS) activity, but the influence on endothelial NOS (eNOS) activity and vascular NO bioavailability remains unclear. We used a bioassay employing rat aortic rings to evaluate vascular NO bioavailability. HBO exposure to 2.8 atm absolute (ATA) in vitro decreased ACh relaxation. This effect remained unchanged, despite treatment with SOD-polyethylene glycol and catalase-polyethylene glycol, suggesting that the reduction in endothelium-derived NO bioavailability was independent of superoxide production. In vitro HBO induced contraction of resting aortic rings with and without endothelium, and these contractions were reduced by the NOS inhibitor N(omega)-nitro-l-arginine. In addition, in vitro HBO attenuated the vascular contraction produced by norepinephrine, and this effect was reversed by N(omega)-nitro-l-arginine, but not by endothelial denudation. These findings indicate stimulation of extraendothelial NO production during HBO exposure. A radiochemical assay was used to assess NOS activity in rat aortic endothelial cells. Catalytic activity of eNOS in cell homogenates was not decreased by HBO, and in vivo HBO exposure to 2.8 ATA was without effect on eNOS activity and/or vascular NO bioavailability in vitro. We conclude that HBO reduces endothelium-derived NO bioavailability independent of superoxide production, and this effect seems to be unrelated to a decrease in eNOS catalytic activity. In addition, HBO increases the resting tone of rat aortic rings and attenuates the contractile response to norepinephrine by endothelium-independent mechanisms that involve extraendothelial NO production.  相似文献   

9.
The complex role of nitric oxide (NO) in the liver can be explained by its patterns of regulation and unique biochemical properties. With a broad range of direct and indirect molecular targets, NO acts as an inhibitor or agonist of cell signaling events. In the liver, constitutively generated NO maintains the hepatic microcirculation and endothelial integrity, while inducible NO synthase (iNOS)-governed NO production can be either beneficial or detrimental. For instance, NO potentiates the hepatic oxidative injury in warm ischemia/reperfusion, while iNOS expression protects against hepatic apoptotic cell death seen in models of sepsis and hepatitis. Anti-apoptotic actions are either cyclic nucleotide dependent or independent, including the expression of heat shock proteins, prevention of mitochondrial dysfunction, and inhibition of caspase activity by S-nitrosation. Whether NO protects or injures is probably determined by the type of insult, the abundance of reactive oxygen species (ROS), the source and amount of NO production and the cellular redox status of liver. Through the use of pharmacological NO donors or NOS gene transfer in conjunction with genetically altered knockout animals, the physiological and pathophysiological roles of NO in liver function can be explored in more detail. The purpose of this paper is to review the current understanding of the role of NO in liver injury.  相似文献   

10.
Many studies in diverse models suggest that nitric oxide (NO) may be protective against liver injury due to ischaemia-reperfusion (IR). We evaluated, in an experimental in vivo model of rat liver partial ischaemia, the effects of pretreatment by an NO donor (spermineNONOate, 5mg/kg), and exogenous cGMP (8Br-cGMP, 16 mg/kg) or an endogenous cGMP producer (ANP, 10 microg/kg), to assess their beneficial effects. After 6h of reperfusion, 8Br-cGMP completely prevented the adverse effect of Nomega-nitro-L-arginine (10mg/kg) and 8Br-cGMP alone showed a protective action on both hepatocytes (AST, -25%, LDH, -55%) and endothelial cells (plasma hyaluronic acid (HA), -30%). ANP caused a marked decrease in AST and LDH activities only after 1h of reperfusion (AST, -30%, LDH, -40%). Pretreatment with spermineNONOate prevented hepatocyte injury after 1 and 6h of reperfusion (AST, -22%, LDH, -27%). However, neither spermineNONOate nor ANP had any protective effect on endothelial cell damage. These results confirm the beneficial effect of an NO donor and strongly suggest the implication of a cGMP pathway that does not involve a blockade of inflammatory cytokines production (IL-6 generation was unaffected by 8Br-cGMP pre-treatment). In our model, 8Br-cGMP showed a greater protective effect than ANP or spermineNONOate and so might be used to prevent hepatic injury after IR. Finally, we propose a schematic representation of the different routes for the actions of NO in protecting the liver against IR damage.  相似文献   

11.
12.

Background

The functions of free radicals on the effects of insulin that result in protection against cerebral ischemic insult in diabetes remain undefined. This present study aims to explain the contradiction among nitric oxide (NO)/superoxide/peroxynitrite of insulin in amelioration of focal cerebral ischemia–reperfusion (FC I/R) injury in streptozotocin (STZ)-diabetic rats and to delineate the underlying mechanisms. Long-Evans male rats were divided into three groups (age-matched controls, diabetic, and diabetic treated with insulin) with or without being subjected to FC I/R injury.

Results

Hyperglycemia exacerbated microvascular functions, increased cerebral NO production, and aggravated FC I/R-induced cerebral infarction and neurological deficits. Parallel with hypoglycemic effects, insulin improved microvascular functions and attenuated FC I/R injury in STZ-diabetic rats. Diabetes decreased the efficacy of NO and superoxide production, but NO and superoxide easily formed peroxynitrite in diabetic rats after FC I/R injury. Insulin treatment significantly rescued the phenomenon.

Conclusions

These results suggest that insulin renders diabetic rats resistant to acute ischemic stroke by arresting NO reaction with superoxide to form peroxynitrite.  相似文献   

13.
There is growing evidence that endothelial dysfunction, which is often defined as the decreased endothelial-derived nitric oxide (NO) bioavailability, is a crucial factor leading to vascular disease states such as hypertension, diabetes, atherosclerosis, heart failure and cigarette smoking. This is due to the fact that the lack of NO in endothelium-dependent vascular disorders contributes to impaired vascular relaxation, platelet aggregation, increased vascular smooth muscle proliferation, and enhanced leukocyte adhesion to the endothelium. During the last several years, it has become clear that reduction of NO bioavailability in the endothelium-impaired function disorders is associated with an increase in endothelial production of superoxide (O(2)(*-)). Because O(2)(*-) rapidly scavenges NO within the endothelium, a reduction of bioactive NO might occur despite an increased NO generation. Among many enzymatic systems that are capable of producing O(2)(*-), NAD(P)H oxidase and uncoupled endothelial NO synthase (eNOS) apparently are the main sources of O(2)(*-) in the endothelial cells. It seems that O(2)(*-) generated by NAD(P)H oxidase may trigger eNOS uncoupling and contribute to the endothelial balance between NO and O(2)(*-). That is maintained at diverse levels.  相似文献   

14.
Redox-dependent impairment of vascular function in sickle cell disease   总被引:2,自引:1,他引:1  
The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.  相似文献   

15.
Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1). In the present study, we examined the impact of this LPC on nitric oxide (NO) bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompanied with a partial disruption of the active endothelial nitric oxide synthase (eNOS)- dimer, leading to eNOS uncoupling and increased formation of reactive oxygen species (ROS). The LPC 18:1-induced ROS formation was attenuated by the superoxide scavenger Tiron, as well as by the pharmacological inhibitors of eNOS, NADPH oxidases, flavin-containing enzymes and superoxide dismutase (SOD). Intracellular ROS-formation was most prominent in mitochondria, less pronounced in cytosol and undetectable in endoplasmic reticulum. Importantly, Tiron completely prevented the LPC 18:1-induced decrease in NO bioavailability in EA.hy926 cells. The importance of the discovered findings for more in vivo like situations was analyzed by organ bath experiments in mouse aortic rings. LPC 18:1 attenuated the acetylcholine-induced, endothelium dependent vasorelaxation and massively decreased NO bioavailability. We conclude that LPC 18:1 induces eNOS uncoupling and unspecific superoxide production. This results in NO scavenging by ROS, a limited endothelial NO bioavailability and impaired vascular function.  相似文献   

16.
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase-2 (COX-2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX-2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX-2 overexpression by COX-2-dependent PGE2-EP2-ERK1/2-NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX-2-independent LKB1-AMPK-NRF2-HO-1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX-2-dependent and COX-2-independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.  相似文献   

17.
18.
Chronic exposure of blood vessels to cardiovascular risk factors such as free fatty acids, LDL-cholesterol, homocysteine and hyperglycemia can give rise to endothelial dysfunction, partially due to decreased synthesis and bioavailability of nitric oxide (NO). Many of these same risk factors have been shown to induce endoplasmic reticulum (ER) stress in endothelial cells. The objective of this study was to examine the mechanisms responsible for endothelial dysfunction mediated by ER stress. ER stress elevated both intracellular and plasma membrane (PM) cholesterols in BAEC by ~ 3-fold, indicated by epifluorescence and cholesterol oxidase methods. Increases in cholesterol levels inversely correlated with neutral sphingomyelinase 2 (NSMase2) activity, endothelial nitric oxide synthase (eNOS) phospho-activation and NO-production. To confirm that ER stress-induced effects on PM cholesterol were a direct consequence of decreased NSMase2 activity, enzyme expression was either enhanced or knocked down in BAEC. NSMase2 over-expression did not significantly affect cholesterol levels or NO-production, but increased eNOS phosphorylation by ~ 1.7-fold. Molecular knock down of NSMase2 decreased eNOS phosphorylation and NO-production by 50% and 40%, respectively while increasing PM cholesterol by 1.7-fold and intracellular cholesterol by 2.7-fold. Furthermore, over-expression of NSMase2 in ER-stressed BAEC lowered cholesterol levels to within control levels as well as nearly doubled the NO production, restoring it to ~ 74% and 68% of controls using tunicamycin and palmitate, respectively. This study establishes NSMase2 as a pivotal enzyme in the onset of endothelial ER stress-mediated vascular dysfunction as its inactivation leads to the attenuation of NO production and the elevation of cellular cholesterol.  相似文献   

19.
Polyethylene glycol (PEG) has been shown to repair cell membranes and, thus, inhibit free radical production in in vitro and in vivo models. We hypothesized that PEG and newly developed organic nitrate forms of PEG (PEG-NO) could repair endothelial dysfunction in ischemia-reperfusion (I/R) injury in the hamster cheek pouch visualized by intravital fluorescent microscopy. After treatments, we evaluated diameter and RBC velocity and flow in arterioles, as well as lipid peroxides in the systemic blood, perfused capillary length, vascular permeability, leukocyte adhesion, and amount of von Willebrand factor (vWF) in the blood after I/R injury. A control group was treated with 5,000- or 10,000-Da PEG, and three groups were treated with PG1 (1 NO molecule covalently bound to PEG, 5,170 Da), PG8 (8 NO molecules covalently bound to PEG, 11,860 Da), and PG16 (16 NO molecules covalently bound to PEG, 14,060 Da). All animals received 0.5 mg/0.5 ml. Lipid peroxides increased at 5 and 15 min of reperfusion, whereas diameter, RBC velocity, and blood flow decreased in arterioles after I/R injury. Vascular permeability, leukocyte adhesion, and vWF increased significantly. PEG and PG1 attenuated lipid peroxides and vasoconstriction during reperfusion and decreased leukocyte adhesion and vascular permeability. PG8 maintained lipid peroxides at normal levels, increased arteriolar diameter, flow, and perfused capillary length, and decreased vWF level and leukocyte adhesion (P < 0.05). PG16 was less effective than PG1 and PG8. In conclusion, PEG-NO shows promise as a compound that protects microvascular perfusion by normalizing the balance between NO level and excessive production of free radicals in endothelial cells during I/R injury.  相似文献   

20.
《Free radical research》2013,47(10):1173-1183
Abstract

Oxidative stress may cause a loss of tetrahydrobiopterin (BH4), a co-factor of nitric oxide synthase (NOS), decrease the bioavailability of NO and aggravate ischemia/reperfusion (I/R) injury in diabetic heart. We hypothesized that ascorbic acid (AA) and N-acetyl cysteine (NAC) protect the diabetic heart from I/R injury by increasing BH4/dihydrobiopterin (BH2) ratio and inhibiting uncoupling of NOS. Diabetes mellitus was induced in rats by streptozotocin treatment, and the hearts were isolated and perfused. BH4 and BH4/BH2 ratio decreased in the diabetic heart associated with increased production of superoxide and nitrotyrosine (NT). Treatment with AA or NAC significantly increased BH4/BH2 ratio in the diabetic heart associated with decreased production of superoxide and NT and increased generation of nitrate plus nitrite (NOx). Pre-treatment with AA or NAC before 30 min ischemia followed by 120 min reperfusion improved left ventricular (LV) function and reduced infarct size in the diabetic but not non-diabetic hearts. The NOS inhibitor, L-NAME, inhibited the increase in the generation of superoxide, NT and NOx, but aggravated LV function and increased infarct size in the diabetic heart. L-NAME also abrogated the increase in NOx and improvement of LV function and the infarct size-limiting effect induced by AA or NAC in the diabetic heart. These results suggest that AA and NAC increase BH4/BH2 ratio and prevent NOS uncoupling in the diabetic heart. Resultant increase in the bioavailability of NO renders the diabetic heart toleratant to I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号