首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.  相似文献   

2.
The dopamine D(2) receptor (D(2)R) regulates renal reactive oxygen species (ROS) production, and impaired D(2)R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, D(2)R may decrease ROS production, in part, through regulation of PON2. D(2)R colocalized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33±6%) in D(2)(-/-) relative to D(2)(+/+) mice. Renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1, 1.9-fold; Nox2, 2.9-fold; and Nox4, 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic, 134±5 vs 93±6mmHg; diastolic, 97±4 vs 65±7mmHg; mean 113±4 vs 75±7mmHg). To determine the relevance of the PON2 and D(2)R interaction in humans, we studied human renal proximal tubule cells. Both D(2)R and PON2 were found in nonlipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D(2)R/D(3)R agonist quinpirole (1μM, 24h) decreased ROS production (-35±6%), associated with decreased NADPH oxidase activity (-32±3%) and expression of Nox2 (-41±7%) and Nox4 (-47±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48h) not only partially prevented the quinpirole-induced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold), which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10μM/30 min) inhibited the increase in ROS production caused by PON2 silencing. Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D(2)R and may, in part, mediate the inhibitory effect of renal D(2)R on NADPH oxidase activity and ROS production.  相似文献   

3.
NAD(P)H oxidase, the main source of reactive oxygen species in vascular cells, is known to be regulated by redox processes and thiols. However, the nature of thiol-dependent regulation has not been established. Protein disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase chaperone of the thioredoxin superfamily involved in protein processing and translocation. We postulated that PDI regulates NAD(P)H oxidase activity of rabbit aortic smooth muscle cells (VSMCs). Western blotting confirmed robust PDI expression and shift to membrane fraction after incubation with angiotensin II (AII, 100 nm, 6 h). In VSMC membrane fraction, PDI antagonism with bacitracin, scrambled RNase, or neutralizing antibody led to 26-83% inhibition (p < 0.05) of oxidase activity. AII incubation led to significant increase in oxidase activity, accompanied by a 6-fold increase in PDI refolding isomerase activity. AII-induced NAD(P)H oxidase activation was inhibited by 57-71% with antisense oligonucleotide against PDI (PDIasODN). Dihydroethidium fluorescence showed decreased superoxide generation due to PDIasODN. Confocal microscopy showed co-localization between PDI and the oxidase subunits p22(phox), Nox1, and Nox4. Co-immunoprecipitation assays supported spatial association between PDI and oxidase subunits p22(phox), Nox1, and Nox4 in VSMCs. Moreover, in HEK293 cells transfected with green fluorescent protein constructs for Nox1, Nox2, and Nox4, each of these subunits co-immunoprecipitated with PDI. Akt phosphorylation, a known downstream pathway of AII-driven oxidase activation, was significantly reduced by PDIasODN. These results suggest that PDI closely associates with NAD(P)H oxidase and acts as a novel redox-sensitive regulatory protein of such enzyme complex, potentially affecting subunit traffic/assembling.  相似文献   

4.
5.
AngII (angiotensin II)-induced excessive ROS (reactive oxygen species) generation and proliferation of VSMCs (vascular smooth muscle cells) is a critical contributor to the pathogenesis of atherosclerosis. PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-1α] is involved in the regulation of ROS generation, VSMC proliferation and energy metabolism. The aim of the present study was to investigate whether PGC-1α mediates AngII-induced ROS generation and VSMC hyperplasia. Our results showed that the protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. Overexpression of PGC-1α inhibited AngII-induced proliferation and migration, ROS generation and NADPH oxidase activity in VSMCs. Conversely, Ad-shPGC-1α (adenovirus-mediated PGC-1α-specific shRNA) led to the opposite effects. Furthermore, the stimulatory effect of Ad-shPGC-1α on VSMC proliferation was significantly attenuated by antioxidant and NADPH oxidase inhibitors. Analysis of several key subunits of NADPH oxidase (Rac1, p22phox, p40phox, p47phox and p67phox) and mitochondrial ROS revealed that these mechanisms were not responsible for the observed effects of PGC-1α. However, we found that overexpression of PGC-1α promoted NOX1 degradation through the proteasome degradation pathway under AngII stimulation and consequently attenuated NOX1 (NADPH oxidase 1) expression. These alterations underlie the inhibitory effect of PGC-1α on NADPH oxidase activity. Our data support a critical role for PGC-1α in the regulation of proliferation and migration of VSMCs, and provide a useful strategy to protect vessels against atherosclerosis.  相似文献   

6.
NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.  相似文献   

7.
High reactive oxygen species (ROS) levels and enhanced vascular smooth muscle cells (VSMC) proliferation are observed in numerous cardiovascular diseases. The mechanisms by which hormones such as angiotensin II (Ang II) acts to promote these cellular responses remain poorly understood. We have previously shown that the ADP-ribosylation factor 6 (ARF6), a molecular switch that coordinates intracellular signaling events can be activated by the Ang II receptor (AT1R). Whether this small GTP-binding protein controls the signaling events leading to ROS production and therefore Ang II-dependent VSMC proliferation, remains however unknown. Here, we demonstrate that in rat aortic VSMC, Ang II stimulation led to the subsequent activation of ARF6 and Rac1, a key regulator of NADPH oxidase activity. Using RNA interference, we showed that ARF6 is essential for ROS generation since in conditions where this GTPase was knocked down, Ang II could no longer promote superoxide anion production. In addition to regulating Rac1 activity, ARF6 also controlled expression of the NADPH oxidase 1 (Nox 1) as well as the ability of the EGFR to become transactivated. Finally, ARF6 also controlled MAPK (Erk1/2, p38 and Jnk) activation, a key pathway of VSMC proliferation. Altogether, our findings demonstrate that Ang II promotes activation of ARF6 to controls ROS production by regulating Rac1 activation and Nox1 expression. In turn, increased ROS acts to activate the MAPK pathway. These signaling events represent a new molecular mechanism by which Ang II can promote proliferation of VSMC.  相似文献   

8.
9.
Andreas Daiber 《BBA》2010,1797(6-7):897-906
This review highlights the important role of redox signaling between mitochondria and NADPH oxidases. Besides the definition and general importance of redox signaling, the cross-talk between mitochondrial and Nox-derived reactive oxygen species (ROS) is discussed on the basis of 4 different examples. In the first model, angiotensin-II is discussed as a trigger for NADPH oxidase activation with subsequent ROS-dependent opening of mitochondrial ATP-sensitive potassium channels leading to depolarization of mitochondrial membrane potential followed by mitochondrial ROS formation and respiratory dysfunction. This concept was supported by observations that ethidium bromide-induced mitochondrial damage suppressed angiotensin-II-dependent increase in Nox1 and oxidative stress. In another example hypoxia was used as a stimulator of mitochondrial ROS formation and by using pharmacological and genetic inhibitors, a role of mitochondrial ROS for the induction of NADPH oxidase via PKC? was demonstrated. The third model was based on cell death by serum withdrawal that promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. By superior molecular biological methods the authors showed that mitochondria were responsible for the fast onset of ROS formation followed by a slower but long-lasting oxidative stress condition based on the activation of an NADPH oxidase (Nox1) in response to the fast mitochondrial ROS formation. Finally, a cross-talk between mitochondria and NADPH oxidases (Nox2) was shown in nitroglycerin-induced tolerance involving the mitochondrial permeability transition pore and ATP-sensitive potassium channels. The use of these redox signaling pathways as pharmacological targets is briefly discussed.  相似文献   

10.
Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN.  相似文献   

11.
NADPH oxidase is the most important source of oxygen-derived radicals (ROS) in the vascular wall. In vascular smooth muscle cells (VSMC), NADPH oxidase is characterized by the expression of the membrane subunit Nox1, which is activated by cytoplasmic proteins binding to its activation domain. We set out to identify the cytoplasmic protein involved in NADPH oxidase activation in mouse VSMC. Western blot analysis revealed that human endothelial cells and leukocytes but not VSMC from the aorta of the rat and the mouse express the classic NADPH oxidase activator p67phox. In mouse VSMC, however, the p67phox homologue Noxa1 was detected. Using antibodies generated against mouse Noxa1, the protein was observed in the cytosolic fraction of mouse VSMC with a molecular weight of about 51 kDa. Immunohistochemistry revealed that Noxa1 is expressed in the smooth muscle layer but not in endothelium or the adventitia of the mouse carotid artery. Fluorescent fusion proteins of Noxa1 were observed to be expressed in the cytoplasm of VSMC and coexpression of the NADPH oxidase organizer Noxo1 targeted the complex to membrane. An antisense plasmid of Noxa1 attenuated the endogenous Noxa1 protein expression in VSMC. This plasmid attenuated the ROS formation in mouse VSMC as detected using L012 chemiluminescence and prevented the agonist-induced ROS production in response to basic fibroblast growth factor and epidermal growth factor. In conclusion, these data indicate that Noxa1 replaces p67phox in VSMC and plays a central role in the activation of the NADPH oxidase in the vascular wall.  相似文献   

12.
Modified low-density lipoprotein (LDL) induces reactive oxygen species (ROS) production by vascular cells. It is unknown if specific oxidized components in these LDL particles such as oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (ox-PAPC) can stimulate ROS production. Bovine aortic endothelial cells (BAEC) were incubated with ox-PAPC (50 microg/ml). At 4 h, ox-PAPC significantly enhanced the rate of O2- production. Pretreatment of BAEC in glucose-free Dulbecco's modified Eagle's medium plus 10 mM 2-deoxyglucose (2-DOG), the latter being an antimetabolite that blocks NADPH production by the pentose shunt, significantly reduced the rate of O2- production. The intensity of NAD(P)H autofluorescence decreased by 28 +/- 12% in BAEC incubated with ox-PAPC compared to untreated cells, with a further decrease in the presence of 2-DOG. Ox-PAPC also increased Nox4 mRNA expression by 2.4-fold +/- 0.1 while pretreatment of BAEC with the small interfering RNA (siNox4) attenuated Nox4 RNA expression. Ox-PAPC further reduced the level of glutathione while pretreatment with apocynin (100 microM) restored the GSH level (control = 22.54 +/- 0.23, GSH = 18.06 +/- 0.98, apocynin = 22.55 +/- 0.60, ox-PAPC + apocynin = 21.17 +/- 0.36 nmol/10(6) cells). Treatment with ox-PAPC also increased MMP-2 mRNA expression accompanied by a 1.5-fold increase in MMP-2 activity. Ox-PAPC induced vascular endothelial OO2-(.) production that appears to be mediated largely by NADPH oxidase activity.  相似文献   

13.
Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 and/or Nox4. An intravenous injection of murine TNF-α was administered to a group of mice and saline injection was administered to controls. Echocardiography was performed on days 1, 7 and 28 post-injection. Ventricular tissue was used to determine gene and protein expression of Nox2, Nox4, ANP, interleukin (IL)-1β, IL-2, IL-6, TNF-α and to measure ROS. Nox2 and Nox4 siRNA were used to determine whether or not Nox2 and Nox4 mediated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in adult human cardiomyocytes. Echocardiography showed a significant increase in left ventricular end-diastolic and left ventricular end-systolic diameters, and a significant decrease in the ejection fraction and fractional shortening in mice 7 and 28 days after TNF-α injection. These two groups of mice showed a significant increase in ventricular ROS, ANP, IL-1β, IL-2, IL-6 and TNF-α proteins. Nox2 and Nox4 mRNA and protein levels were also sequentially increased. ROS was significantly decreased by inhibitors of NADPH oxidase, but not by inhibitors of other ROS production systems. Nox2 and Nox4 siRNA significantly attenuated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in cardiomyocytes. Our study highlights a novel TNF-α-induced chronic ventricular remodelling mechanism mediated by sequential regulation of Nox2 and Nox4 subunits.  相似文献   

14.
Because systems controlled by basal NAD(P)H oxidase activity appear to contribute to differences in responses of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to hypoxia, we characterized the Nox oxidases activities present in these vascular segments and how cytosolic NAD(P)H redox systems could be controlling oxidase activity. BPA generated approximately 60-80% more lucigenin (5 microM) chemiluminescence detectable superoxide than BCA. Apocynin (10 microM), a NAD(P)H oxidase inhibitor, and 6-aminonicotinamide (1 mM), a pentose phosphate inhibitor (PPP), both attenuated (approximately by 50-70%) superoxide detected in BPA and BCA. There was no significant difference in the expression of Nox2 or Nox4 mRNA or protein detected by Western blot analysis. NADPH and NADH increased superoxide in homogenates and isolated microsomal membrane fractions in a manner consistent with BPA and BCA having similar levels of oxidase activity. BPA had 4.2-fold higher levels of NADPH than BCA. The activity and protein levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting PPP enzyme generating cytosolic NADPH, were 1.5-fold higher in BPA than BCA. Thus BPA differ from BCA in that they have higher levels of G6PD activity, NADPH, and superoxide. Because both arteries have similar levels of Nox expression and activity, elevated levels of cytosolic NADPH may contribute to increased superoxide in BPA.  相似文献   

15.
It is proposed that myocardial cell apoptosis causes ventricular remodeling and heart failure. The aim of the present study was to determine the effects of rutaecarpine (Rut) on hypoxia-reoxygenation (H-R)-induced apoptosis in myocardial cell line H9c2, as well as the underlying mechanisms. Cultured H9c2 cells were exposed to hypoxia for 24 h, followed by 12 h reoxygenation. Rut (in concentrations of 0.1, 1, and 10 μmol/L) was added 1 h prior to H-R. Cell viability and lactate dehydrogenase were measured to evaluate the cell injuries. Apoptosis was evaluated by Hoechst 33258 staining and flow cytometry. NADPH oxidase activity was measured by assay kit; intracellular reactive oxygen species (ROS) generation was detected by 2',7'-dichlorofluorescein diacetate; and Nox2, Nox4, and p47(phox) mRNA and protein expression were analyzed by real-time PCR and Western blotting, respectively. The results showed that H-R significantly decreased cell viability and increased the lactate dehydrogenase release, as well as the apoptotic rate, concomitantly with enhanced NADPH oxidase activity. H-R also upregulated mRNA and protein expressions of Nox2, Nox4, and p47(phox) and increased ROS production. Treatment with Rut markedly reversed these effects introduced by H-R. These results suggest that the protective effects of Rut against H-R-induced myocardial cell injury and apoptosis might, at least partly, be due to the inhibition of the NADPH oxidase - ROS pathway.  相似文献   

16.
The extracellular matrix (ECM) facilitates pancreatic cancer cells survival, which is of central importance for pancreatic adenocarcinoma that is highly fibrotic. Here, we show that reactive oxygen species (ROS) mediate the prosurvival effect of ECM in human pancreatic cancer cells. Fibronectin and laminin stimulated ROS production and NADPH oxidase activation in pancreatic cancer cells. Both pharmacological and molecular approaches show that fibronectin stimulated ROS production through activation of NADPH oxidase and NADPH oxidase-independent pathways and that 5-lipoxygenase (5-LO) mediates both these pathways. Analyses of the mechanisms of ROS production by ECM proteins and growth factors indicate that activation of NADPH oxidase (Nox4) is a common mechanism employed both by ECM proteins and growth factors to increase ROS in pancreatic cancer cells. We also found that Nox4 is present in human pancreatic adenocarcinoma tissues and that these tissues display membrane NADPH oxidase activity. ECM proteins and growth factors activate NADPH oxidase through different mechanisms; in contrast to ECM proteins, growth factors activate NADPH oxidase through 5-LO-independent mechanisms. Inhibition of 5-LO or NADPH oxidase with pharmacological inhibitors of these enzymes and with Nox4 or 5-LO antisense oligonucleotides markedly stimulated apoptosis in cancer cells cultured on fibronectin. Our results indicate that ROS generation via 5-LO and downstream NADPH oxidase mediates the prosurvival effect of ECM in pancreatic cancer cells. These mechanisms may play an important role in pancreatic cancer resistance to treatments and thus represent novel therapeutic targets.  相似文献   

17.
18.
Nox1 and Nox4, homologues of the leukocyte NADPH oxidase subunit Nox2 (gp91phox) mediate superoxide anion formation in various cell types. However, their interactions with other components of the NADPH oxidase are poorly defined. We determined whether a direct interaction of Nox1 and Nox4 with the p22phox subunit of the NADPH oxidase occurs. Using confocal microscopy, co-localization of p22phox with Nox1, Nox2, and Nox4 was observed in transiently transfected vascular smooth muscle cells (VSMC) and HEK293 cells. Plasmids coding for fluorescent fusion proteins of p22phox and the Nox proteins with cyan- and yellow-fluorescent protein (cfp and yfp, respectively) were constructed and expressed in VSMC and HEK293 cells. The cfp-tagged p22phox expression level increased upon cotransfection with Nox1 or Nox4. Protein-protein interaction between the fluorescent fusion proteins of p22phox and the Nox partners was observed using the fluorescence resonance energy transfer technique. Immunoprecipitation of native Nox1 from human VSMC revealed co-precipitation of p22phox. Immunoprecipitation from transfected HEK293 cells revealed co-precipitation of native p22phox with yfp-tagged Nox1, Nox2, and Nox4. Following mutation of a histidine (corresponding to the position 115 in human Nox2) to leucine, this interaction was abolished. Transfection of rat p22phox (but not Noxo1 and Noxa1) increased the radical generation in cells expressing Nox4. We provide evidence that p22phox directly interacts with Nox1 and Nox4, to form an superoxide-generating NADPH oxidase and demonstrate that mutation of the potential heme binding site in the Nox proteins disrupts the complex formation of Nox1 and Nox4 with p22phox.  相似文献   

19.
Extracellular matrix accumulation contributes to the progression of chronic kidney disease. Many growth factors including insulin-like growth factor-I (IGF-I) enhance matrix protein accumulation. Proximal tubular epithelial cells (PTCs) synthesize matrix proteins. NADPH oxidases are major sources of reactive oxygen species (ROS), important signaling molecules that mediate biological responses in a variety of cells and tissue. We investigated the mechanism by which IGF-I regulates fibronectin accumulation in PTCs and the role of a potential redox-dependent signaling pathway. IGF-I induces an increase in NADPH-dependent superoxide generation, enhances the release of hydrogen peroxide, and increases the expression of NADPH oxidase 4 (Nox4) in PTCs. IGF-I also stimulates phosphorylation of Akt, and inhibition of Akt or its upstream activator phosphatidylinositol 3-kinase attenuates IGF-I-induced fibronectin accumulation. Expression of dominant negative Akt also inhibits IGF-I-induced expression of fibronectin, indicating a role for this kinase in fibronectin accumulation. Expression of dominant negative adenovirus Nox4 inhibits IGF-I-induced NADPH oxidase activity, Akt phosphorylation, and fibronectin protein expression. Moreover, transfection of small interfering RNA targeting Nox4 decreases Nox4 protein expression and blocks IGF-I-induced Akt phosphorylation and the increase in fibronectin, placing Nox4 and ROS upstream of Akt signaling pathway. To confirm the role of Nox4, PTCs were infected with adenovirus construct expressing wild-type Nox4. Ad-Nox4, but not control Ad-green fluorescent protein, upregulated Nox4 expression and increased NADPH oxidase activity as well as fibronectin expression. Taken together, these results provide the first evidence for a role of Nox4 in IGF-I-induced Akt phosphorylation and fibronectin expression in tubular epithelial cells.  相似文献   

20.
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号