首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized LDL (OxLDL) is composed of many potentially proatherogenic molecules, including oxysterols. Of the oxysterols, 7-ketocholesterol (7-KC) is found in relatively large abundance in OxLDL, as well as in atherosclerotic plaque and foam cells in vivo. Although there is evidence that 7-KC activates endothelial cells, its effect on monocytes is unknown. We tested the hypothesis that 7-KC may induce monocyte differentiation and promote foam cell formation. THP-1 cells were used as a monocyte model system and were treated with 7-KC over a range of concentrations from 0.5 to 10 microg/ml. Changes in cell adhesion properties, cell morphology, and expression of antigens characteristic of differentiated macrophages were monitored over a 7-day period. 7-KC promoted cells to firmly adhere and display morphologic features of differentiated macrophages; this effect was time and dose dependent and was markedly more potent than cholesterol treatment (45% of cells became adherent after 7 days of treatment with 7-KC at 10 microg/ml vs. less then 5% for control cells, P < 0.01). Similar effects were obtained when LDL enriched with 7-KC or OxLDL were added to THP-1 cells. 7-KC-differentiated cells expressed CD11b, CD36, and CD68, phagocytized latex beads, and formed lipid-laden foam cells after exposure to acetylated LDL or OxLDL. In contrast to 7-KC, oxysterols with known cell regulatory effects such as 25-hydroxycholesterol, 7beta-hydroxycholesterol, and (22R)-hydroxycholesterol did not effectively promote THP-1 differentiation.In conclusion, these results demonstrate for the first time that 7-KC, a prominent oxysterol formed in OxLDL by peroxidation of cholesterol, may play an important role in promoting monocyte differentiation and foam cell formation. These studies also suggest that 7-KC induces monocyte differentiation through a sterol-mediated regulatory pathway that remains to be characterized.  相似文献   

2.
The aim of this study was to verify the hypothesis that beta-carotene may prevent 7-ketocholesterol (7-KC)-induced apoptosis in human macrophages. Therefore, THP-1 macrophages were exposed to 7-KC (5-50 microM) alone and in combination with beta-carotene (0.25-1 microM). 7-KC inhibited the growth of macrophages in a dose- and a time-dependent manner by inducing an arrest of cell cycle progression in the G0/G1 phase and apoptosis. Concomitantly, p53, p21, and Bax expressions were increased by 7-KC, whereas the levels of AKT, Bcl-2, and Bcl-xL were decreased. beta-Carotene prevented the growth-inhibitory effects of 7-KC in a dose- and time-dependent manner as well as the effects of 7-KC on the expression of cell cycle- and apoptosis-related proteins. 7-KC also enhanced reactive oxygen species (ROS) production through an increased expression of NAD(P)H oxidase (NOX-4). The effects of 7-KC were counteracted by the addition of the NAD(P)H oxidase inhibitor DPI or by cotransfection of siNOX-4 mRNA. beta-Carotene prevented 7-KC-induced increase in ROS production and in NOX-4 expression, as well as the phosphorylation of p38, JNK, and ERK1/2 induced by 7-KC. These data suggest a possible antiatherogenic role of beta-carotene through the prevention of 7-KC toxicity in human macrophages.  相似文献   

3.
Cells of the vasculature, including macrophages, smooth muscle cells, and endothelial cells, exhibit apoptosis in culture upon treatment with oxidized low density lipoprotein, as do vascular cells of atherosclerotic plaque. Several lines of evidence support the hypothesis that the apoptotic component of oxidized low density lipoprotein is one or more oxysterols, which have been shown to induce apoptosis through the mitochondrial pathway. Activation of the mitochondrial pathway of apoptosis is regulated by members of the BCL family of proteins. In this study, we demonstrate that, in the murine macrophage-like cell line P388D1, oxysterols (25-hydroxycholesterol and 7-ketocholesterol) induced the degradation of the prosurvival protein kinase AKT (protein kinase B). This led, in turn, to the activation of the BCL-2 homology-3 domain-only proteins BIM and BAD and down-regulation of the anti-apoptotic multi-BCL homology domain protein BCL-xL. These responses would be expected to activate the pro-apoptotic multi-BCL homology domain proteins BAX and BAK, leading to the previously reported release of cytochrome c observed during oxysterol-induced apoptosis. Somewhat surprisingly, small interfering RNA knockdown of BAX resulted in a complete block of the induction of apoptosis by 25-hydroxycholesterol.  相似文献   

4.
The present study was undertaken to examine whether lycopene is able to counteract 7-ketocholesterol (7-KC)-induced oxidative stress and apoptosis in human macrophages. Human THP-1 macrophages were exposed to 7-KC (10–25 μM) alone and in combination with lycopene (0.5–2 μM), and we monitored changes in cell oxidative status [reactive oxygen species (ROS) production, NOX-4, hsp70 and hsp90 expressions, 8-OHdG formation] and in cell proliferation and apoptosis. After 24 h of treatment, lycopene significantly reduced the increase in ROS production and in 8-OHdG formation induced by the oxysterol in a dose-dependent manner. Moreover, the carotenoid strongly prevented the increase of NOX-4, hsp70 and hsp90 expressions as well as the phosphorylation of the redox-sensitive p38, JNK and ERK1/2 induced by the oxysterol. The attenuation of 7-KC-induced oxidative stress by lycopene coincided with a normalization of cell growth in human macrophages. Lycopene prevented the arrest in G0/G1 phase of cell cycle induced by the oxysterol and counteracted the increased expression of p53 and p21. Concomitantly, it inhibited 7-KC-induced apoptosis, by limiting caspase-3 activation and the modulatory effects of 7-KC on AKT, Bcl-2, Bcl-xL and Bax. Comparing the effects of lycopene, β-carotene and (5Z)-lycopene on ROS production, cell growth and apoptosis show that lycopene and its isomer were more effective than β-carotene in counteracting the dangerous effects of 7-KC in human macrophages. Our study suggests that lycopene may act as a potential antiatherogenic agent by preventing 7-KC-induced oxidative stress and apoptosis in human macrophages.  相似文献   

5.
The objective was to compare the effect of a LXR synthetic ligand (T0901317) on cell viability and lysosomal membrane destabilization in human U937 macrophage and aortic smooth muscle cell (HASMC) incubated in the presence of cholesterol or 27-OH and to verify whether the Akt signalling pathway is involved. In U937 macrophages, cholesterol triggered cell survival while 27-OH triggered either survival (low concentration) or a lysosomal independent apoptosis (high concentration). Despite a strong effect of T0901317 on macrophage survival, its effect on cell viability is hampered in cells incubated in the presence of cholesterol or 27-OH. In these cells, cholesterol triggers the phosphorylation of Akt on the Thr308 residue. In HASMC, cholesterol induced apoptosis but no additionnal effect of T0901317 prevented apoptosis. All together, cell survival triggered by LXRs is impaired in the presence of cholesterol or high concentrations of 27-OH in human U937 macrophages and is not effective in HASMC.  相似文献   

6.
Endothelial nitric-oxide synthase (eNOS) function is fundamentally modulated by protein phosphorylation. In particular, phosphorylation of serine 1179 (bovine)/1177 (human) by Akt has been shown to be the central mechanism of eNOS regulation. Here we revealed a novel role of proteasome in controlling eNOS serine 1179 phosphorylation and function. Rather than affecting eNOS turnover, proteasomal inhibition specifically dephosphorylated eNOS serine 1179, leading to decreased enzymatic activity. Blocking protein phosphatase 2A (PP2A) by okadaic acid or PP2A knockdown restored eNOS serine 1179 phosphorylation and activity in proteasome-inhibited cells. Although total PP2A expression and activity in cells were not affected by proteasome inhibitors, proteasomal inhibition induced PP2A ubiquitination and ubiquitinated PP2A translocated from cytosol to membrane. Further biochemical analyses demonstrated that eNOS associated with PP2A on cell membranes. Proteasomal inhibition markedly enhanced PP2A association to eNOS, and this increase of PP2A dephosphorylated eNOS and its upstream kinase Akt. Taken together, these studies identified a novel pathway in which proteasome modulates eNOS phosphorylation by inducing intracellular PP2A translocation.  相似文献   

7.
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not IκBα degradation or tumour necrosis factor-α release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.  相似文献   

8.
Tumour necrosis factor (TNF) is known to induce apoptosis, but recently, TNF was shown to promote cell survival, a process regulated by phosphatidylinositol-3-OH kinase (PI3K) and the NFkappaB pathway. In this study, we investigated the relationship between the molecules implicated in regulating TNF-induced cell survival and apoptosis induced by TNF in a human head and neck squamous cell carcinoma cell line (SAS), with special reference to the Akt pathway, one of the pathways related to cell survival. In SAS cells, TNF induced the phosphorylation of Akt at both Ser473 and Thr308, causing the activation of Akt, and also induced the phosphorylation and degradation of IkappaB (inhibitor of NFkappaB). This phosphorylation and degradation was inhibited by pretreating the cells with the PI3K inhibitors, wortmannin or LY294002. The apoptosis of SAS cells induced by TNF was dependent on the concentration: a high concentration of TNF, but not a low concentration, induced apoptosis within 30 h. However, a low concentration of TNF in the presence of wortmannin or LY294002 induced apoptosis. Furthermore, expression of the kinase-negative form of Akt, IKKalpha or IKKbeta, and the undegradable mutant of IkappaB, also induced apoptosis at low concentrations of TNF. When the SAS cells expressed constitutively activated Akt, apoptosis was not induced, even by high concentrations of TNF. These observations suggest that, in the SAS cell line, the PI3K-NFkappaB pathway contributes to TNF-induced cell survival and that inhibition of this pathway accelerates apoptosis.  相似文献   

9.
Macrophage apoptosis is an important process in the pathophysiology of atherosclerosis. Oxidized low-density lipoproteins (OxLDL) are a major component of lesions and potently induce macrophage apoptosis. Cannabinoid receptor 2 (CB2), the predominant macrophage cannabinoid receptor, modulates several macrophage processes associated with ongoing atherosclerosis; however, the role of CB2 in macrophage apoptosis is unknown. To determine if CB2 influences a macrophage apoptotic pathway relevant to atherosclerosis, we examined the effect of CB2 deficiency on OxLDL-induced macrophage apoptosis. In situ terminal transferase-mediated dUTP nick end labeling (TUNEL) analysis of resident peritoneal macrophages detected significantly fewer apoptotic CB2(-/-) macrophages than CB2(+/+) macrophages after incubation with OxLDL (27.9 +/- 4.7% vs. 61.9 +/- 8.5%, P < 0.001) or 7-ketocholesterol (7KC) (18.9 +/- 10.5% vs. 54.1 +/- 6.9%, P < 0.001), an oxysterol component of OxLDL. Caspase-3 activity; proteolytic conversion of procaspase-3; and cleavage of a caspase-3 substrate, PARP, were also diminished in 7KC-treated CB2(-/-) macrophages. Furthermore, the deactivation of the prosurvival kinase, Akt, in response to 7KC was impaired in CB2(-/-) macrophages. These results suggest that CB2 expression increases the susceptibility of macrophages to OxLDL-induced apoptosis, in part, by modulating the effect of oxysterols on the Akt survival pathway and that CB2 may influence atherosclerosis by modulating lesional macrophage apoptosis.  相似文献   

10.
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7beta-hydroxycholesterol (7beta-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not IkappaBalpha degradation or tumour necrosis factor-alpha release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.  相似文献   

11.
Serine/threonine kinase Akt is thought to mediate many biological actions toward anti-apoptotic responses. Screening of drugs that could interfere with the Akt signaling pathway revealed that Hsp90 inhibitors (e.g. geldanamycin, radicicol, and its analogues) induced Akt dephosphorylation, which resulted in Akt inactivation and apoptosis of the cells. Hsp90 inhibitors did not directly affect Akt kinase activity in vitro. Thus, we examined the effects of Hsp90 inhibitors on upstream Akt kinases, phosphatidylinositide-3-OH kinase (PI3K) and 3-phosphoinositide-dependent protein kinase-1 (PDK1). Hsp90 inhibitors had no effect on PI3K protein expression. In contrast, treatment of the cells with Hsp90 inhibitors decreased the amount of PDK1 without directly inhibiting PDK1 kinase activity. We found that the kinase domain of PDK1 was essential for complex formation with Hsp90 and that Hsp90 inhibitors suppressed PDK1 binding to Hsp90. PDK1 degradation mechanisms revealed that inhibition of PDK1 binding to Hsp90 caused proteasome-dependent degradation of PDK1. Treatment of proteasome inhibitors increased the amount of detergent-insoluble PDK1 in Hsp90 inhibitor-treated cells. Therefore, the association of PDK1 with Hsp90 regulates its stability, solubility, and signaling. Because Akt binding to Hsp90 is also involved in the maintenance of Akt kinase activity, Hsp90 plays an important role in PDK1-Akt survival signaling pathway.  相似文献   

12.
Oxysterols are 27-carbon oxidation products of cholesterol metabolism. Oxysterols possess several biological actions, including the promotion of cell death. Here, we examined the ability of 7-ketocholesterol (7-KC), cholestane-3β-5α-6β-triol (triol), and a mixture of 5α-cholestane-3β,6β-diol and 5α-cholestane-3β,6α-diol (diol) to promote cell death in a human breast cancer cell line (MDA-MB-231). We determined cell viability, after 24-h incubation with oxysterols. These oxysterols promoted apoptosis. At least part of the observed effects promoted by 7-KC and triol arose from an increase in the expression of the sonic hedgehog pathway mediator, smoothened. However, this increased expression was apparently independent of sonic hedgehog expression, which did not change. Moreover, these oxysterols led to increased expression of LXRα, which is involved in cellular cholesterol efflux, and the ATP-binding cassette transporters, ABCA1 and ABCG1. Diols did not affect these pathways. These results suggested that the sonic hedgehog and LXRα pathways might be involved in the apoptotic process promoted by 7-KC and triol.  相似文献   

13.
Growth factor receptors promote cell growth and survival by stimulating the activities of phosphatidylinositol 3-kinase and Akt/PKB. Here we report that Akt activation causes proteasomal degradation of substrates that control cell growth and survival. Expression of activated Akt triggered proteasome-dependent declines in the protein levels of the Akt substrates tuberin, FOXO1, and FOXO3a. The addition of proteasome inhibitors stabilized the phosphorylated forms of multiple Akt substrates, including tuberin and FOXO proteins. Activation of Akt triggered the ubiquitination of several proteins containing phosphorylated Akt substrate motifs. Together the data indicate that activated Akt stimulates proteasomal degradation of its substrates and suggest that Akt-dependent cell growth and survival are induced through the degradation of negative regulators of these processes.  相似文献   

14.
The proteasome is a multi-subunit protease complex that is involved in intracellular protein degradation in eukaryotes. Previously, we have reported that selective, synthetic chymotryptic proteasome inhibitors inhibit A-NK cell-mediated cytotoxicity by approximately 50%; however, the exact role of the proteasome in NK cell-mediated cytotoxicity remains unknown. Herein, we report that proteasome inhibitors, MG115 and MG132, decreased the proteasome chymotrypsin-like activity in the rat natural killer cell line RNK16 by 85% at a concentration of 5 microM. The viability of RNK16 cells was also reduced in the presence of these inhibitors. Both inhibitors induced the apoptosis of RNK16 cells, as shown by DNA fragmentation, caspase-3 activation and the appearance of sub-G-cell populations. An increase in the fraction of apoptotic cells was observed in a dose- and time-dependent manner in our studies. In addition, the activity of caspase-1, -2, -6, -7, -8, and -9, was increased following the treatment of RNK16 cells with these inhibitors. Further investigation revealed that the expression of Fas (CD95) protein on the RNK16 cell surface was increased after the treatment by MG115 or MG132, indicating that apoptosis induced by proteasome inhibitors in RNK16 cells might be mediated through the Fas (CD95)-mediated death pathway as well. Our studies indicate, for the first time, that proteasomal chymotryptic inhibitors can reduce natural killer cell viability and therefore indirectly inhibit cell-mediated cytotoxicity via the apoptosis-inducing properties of these agents.  相似文献   

15.
In several neurodegenerative diseases of the CNS, oligodendrocytes are implicated in an inflammatory process associated with altered levels of oxysterols and inflammatory enzymes such as secreted phospholipase A2 (sPLA2). In view of the scarce literature related to this topic, we investigated oxysterol effects on these myelinating glial cells. Natural oxysterol 25-hydroxycholesterol (25-OH; 1 and 10 μM) altered oligodendrocyte cell line (158N) morphology and triggered apoptosis (75% of apoptosis after 72 h). These effects were mimicked by 22( S )-OH (1 and 10 μM) which does not activate liver X receptor (LXR) but not by a synthetic LXR ligand (T0901317). Therefore, oxysterol-induced apoptosis appears to be independent of LXR. Interestingly, sPLA2 type IIA (sPLA2-IIA) over-expression partially rescued 158N cells from oxysterol-induced apoptosis. In fact, 25-OH, 24( S )-OH, and T0901317 stimulated sPLA2-IIA promoter and sPLA2 activity in oligodendrocyte cell line. Accordingly, administration of T0901317 to mice enhanced sPLA2 activity in brain extracts by twofold. Short interfering RNA strategy allowed to establish that stimulation of sPLA2-IIA is mediated by pregnane X receptor (PXR) at high oxysterol concentration (10 μM) and by LXR β at basal oxysterol concentration. Finally, GC coupled to mass spectrometry established that oligodendrocytes contain oxysterols and express their biosynthetic enzymes, suggesting that they may act through autocrine/paracrine mechanism. Our results show the diversity of oxysterol signalling in the CNS and highlight the positive effects of the LXR/PXR pathway which may open new perspectives in the treatment of demyelinating and neurodegenerative diseases.  相似文献   

16.
Biological activities of oxysterols seem tightly regulated. Therefore, the ability to induce cell death of structurally related oxysterols, such as those oxidized at C7(7alpha-, 7beta-hydroxycholesterol, and 7-ketocholesterol), was investigated on U937 cells at different times of treatment in a concentration range of 5-80 microg/ml. Whereas all oxysterols accumulate inside the cells, strong inhibition of cell growth and increased permeability to propidium iodide were observed only with 7beta-hydroxycholesterol and 7-ketocholesterol, which trigger an apoptotic process characterized by the occurrence of cells with fragmented and/or condensed nuclei, and by various cellular dysfunctions: loss of mitochondrial transmembrane potential, cytosolic release of cytochrome c, activation of caspase-9 and -3 with subsequent enhanced activity of caspase-3, degradation of poly(ADP-ribose) polymerase, and increased accumulation of cellular C16 : 0 and C24 : 1 ceramide species. This ceramide generation is not attributed to caspase activation since inhibition of 7beta-hydroxycholesterol- and 7-ketocholesterol-induced apoptosis by Z-VAD-fmk (100 microM), a broad spectrum caspase inhibitor, did not reduce C16 : 0 and C24 : 1 ceramide species accumulation. Conversely, when U937 cells were treated with 7beta-hydroxycholesterol and 7-ketocholesterol in the presence of fumonisin B1 (100 microM), a specific inhibitor of ceramide synthase, C16 : 0 and C24 : 1 ceramide species production was completely abrogated whereas apoptosis was not prevented. Noteworthy, 7alpha-hydroxycholesterol induced only a slight inhibition of cell growth. Collectively, these results are consistent with the notion that the alpha or beta hydroxyl radical position of oxysterols oxidized at C7 plays a key role in the induction of the apoptotic process. In addition, our findings demonstrate that 7beta-hydroxycholesterol- and 7-ketocholesterol-induced apoptosis involve the mitochondrial signal transduction pathway and they suggest that C16 : 0 and C24 : 1 ceramide species generated through ceramide synthase play a minor role in the commitment of 7beta-hydroxycholesterol- and 7-ketocholesterol-induced cell death.  相似文献   

17.
Adaptation of epithelial cells to persistent oxidative stress plays an important role in inflammation-associated carcinogenesis. This adaptation process involves activation of Nrf2 (nuclear factor-E2-related factor-2), which has been recently shown to contribute to carcinogenesis through the induction of proteasomal gene expression and proteasome activity. To verify this possible link between inflammation, oxidative stress, and Nrf2-dependent proteasome activation, we explored the impact of inflammatory (M1) macrophages on the human colon epithelial cell line NCM460. Transwell cocultures with macrophages differentiated from granulocyte monocyte-colony-stimulating factor-treated monocytes led to an increased activity of Nrf2 in NCM460 cells along with an elevated proteasome activity. This higher proteasome activity resulted from Nrf2-dependent induction of proteasomal gene expression, as shown for the 19 and 20 S subunit proteins S5a and α5, respectively. These effects of macrophage coculture were preceded by an increase of reactive oxygen species in cocultured NCM460 cells and could be blocked by catalase or by the reactive oxygen species scavenger Tiron, whereas transient treatment of NCM460 cells with H(2)O(2) similarly led to Nrf2-dependent proteasome activation. Through the Nrf2-dependent increase of proteasomal gene expression and proteasome activity, the sensitivity of NCM460 cells to tumor necrosis factor-related apoptosis-inducing ligand- or irinotecan-induced apoptosis declined. These findings indicate that inflammatory conditions such as the presence of M1 macrophages and the resulting oxidative stress are involved in the Nrf2-dependent gain of proteasome activity in epithelial cells, e.g. colonocytes, giving rise of greater resistance to apoptosis. This mechanism might contribute to inflammation-associated carcinogenesis, e.g. of the colon.  相似文献   

18.
The phosphoinositide 3-OH kinase (PI3K)-PKB/Akt signaling pathway has been shown to mediate both Ras- and cytokine-induced protection from apoptosis. In addition, apoptosis induced by the p53 tumor suppressor protein can be inhibited by Ras- and cytokine-mediated signaling pathways. It was therefore of interest to determine if the PI3K-PKB/Akt signaling pathway was capable of conferring protection from apoptosis induced by p53. We demonstrate in this report that constitutively active PI3K and PKB/Akt are capable of significantly delaying the onset of p53-mediated apoptosis. This was manifested as a delay in the kinetics of DNA degradation and cell death as well as a profound attenuation in the accumulation of cells with a sub-G(1) DNA content. Moreover, we found that this effect is mediated in the absence of changes in expression of Bcl-2, Bcl-Xl, and the pro-apoptotic protein Bax. Our results provide the first direct and unambiguous link between p53-mediated apoptosis and the PI3K-PKB/Akt signaling pathway.  相似文献   

19.
Despite the progress made in recent years in the field of oncology, the results of glioblastoma treatment remain unsatisfactory. In this paper, cholesterol derivatives - oxysterols - have been investigated in the context of their anti-cancer activity. First, the influence of three oxysterols (7-K, 7β-OH and 25-OH), differing in their chemical structure, on the properties of a model membrane imitating glioblastoma multiforme (GBM) cells was investigated. For this purpose, the Langmuir monolayer technique was applied. The obtained results clearly show that oxysterols modify the structure of the membrane by its stiffening, with the 7-K effect being the most pronounced. Next, the influence of 7-K on the nanomechanical properties of glioblastoma cells (U-251 line) was verified with AFM. It has been shown that 7-K has a dose-dependent cytotoxic effect on glioblastoma cells leading to the induction of apoptosis as confirmed by viability tests. Interestingly, significant changes in membrane structure, characteristic for phospholipidosis, has also been observed. Based on our results we believe that oxysterol-induced apoptosis and phospholipidosis are related and may share common signaling pathways. Dysregulation of lipids in phospholipidosis inhibit cell proliferation and may play key roles in the induction of apoptosis by oxysterols. Moreover, anticancer activity of these compounds may be related to the immobilization of cancer cells as a result of stiffening effect caused by oxysterols. Therefore, we believe that oxysterols are good candidates as new therapeutic molecules as an alternative to the aggressive treatment of GBM currently in use.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号