首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human oncogene bcl-2 exerts protective functions in numerous models of apoptotic cell death and increased oxidative stress. We investigated the effects of inducible bcl-2 overexpression on cellular survival and redox status in dopaminergic rat pheochromocytoma PC 12 cells. Induction of high-level expression of bcl-2 in PC 12 cells resulted in generation of oxidative stress and cessation of growth by cell cycle arrest. Cell cycle arrest in bcl-2-overexpressing PC 12 cells was prevented by an inhibitor of extracellular signal-related kinase (ERK 1/2) activation. Protective effects of bcl-2 expression against L-DOPA neurotoxicity decreased with increasing amounts of bcl-2. Furthermore, high-level bcl-2 overexpression sensitized cells towards oxidative stress and glutathione depletion. Our data suggest that bcl-2 expression is beneficial only in a limited gene dosage range and that high-level expression of bcl-2 exerts potential deleterious effects.  相似文献   

3.
Abstract

The underlying mechanism of the central nervous system (CNS) injury after acute carbon monoxide (CO) poisoning is interlaced with multiple factors including apoptosis, abnormal inflammatory responses, hypoxia, and ischemia/reperfusion-like problems. One of the current hypotheses with regard to the molecular mechanism of CO poisoning is the oxidative injury induced by reactive oxygen species, free radicals, and neuronal nitric oxide. Up to now, the relevant mechanism of this injury remains poorly understood. The weakening of antioxidant systems and the increase of lipid peroxidation in the CNS have been implicated, however. Accordingly, in this review, we will highlight the relationship between oxidative stress and CO poisoning from the perspective of forensic toxicology and molecular toxicology.  相似文献   

4.
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.  相似文献   

5.
A series of neurotoxic tetrahydroisoquinoline alkaloids has been detected in certain regions of mammalian brains. One such dopaminergic tetrahydroisoquinoline neurotoxin is salsolinol (SAL), which is suspected of being associated with the etiology of Parkinson’s disease and neuropathology of chronic alcoholism. In the present study, we found that SAL in combination with Cu(II) induced strand scission in pBR322 and φX174 supercoiled DNA, which was inhibited by the copper chelator, reactive oxygen species (ROS) scavengers, reduced glutathione, and catalase. SAL in the presence of Cu(II) caused hydroxylation of salicylic acid to produce 2,3- and 2,5-dihydroxybenzoic acids. Reaction of calf thymus DNA with SAL plus Cu(II) resulted in substantial oxidative DNA damage as determined by 8-hydroxydeoxyguanosine (8-OH-dG) formation. Blockade of the dihydroxy functional group of SAL abolished its capability to yield 8-OH-dG in the presence of Cu(II). The dehydro analog of SAL, 1-methyl-6,7-dihydroxy-3,4-dihydroisoquinoline, produced significantly high levels of 8-OH-dG when incubated with calf thymus DNA, even in the absence of Cu(II), which appears to be attributable to the tautomer formation by this compound. In another experiment, SAL exerted cytotoxicity when treated to rat pheochromocytoma (PC12) cells. Based on these findings, it seems likely that SAL undergoes redox cycling in the presence of Cu(II) with concomitant production of ROS, particularly hydroxyl radical, which could contribute to DNA damaging and cytotoxic properties of this neurotoxin.  相似文献   

6.
Changes in the expression and function of caveolin-1 (Cav-1) have been proposed as a pathogenic mechanism underlying many cardiovascular diseases. Cav-1 binds to and regulates the activity of numerous signaling proteins via interactions with its scaffolding domain. In endothelial cells, Cav-1 has been shown to reduce reactive oxygen species (ROS) production, but whether Cav-1 regulates the activity of NADPH oxidases (Noxes), a major source of cellular ROS, has not yet been shown. Herein, we show that Cav-1 is primarily expressed in the endothelium and adventitia of pulmonary arteries (PAs) and that Cav-1 expression is reduced in isolated PAs from multiple models of pulmonary artery hypertension (PH). Reduced Cav-1 expression correlates with increased ROS production in the adventitia of hypertensive PA. In vitro experiments revealed a significant ability of Cav-1 and its scaffolding domain to inhibit Nox1–5 activity and it was also found that Cav-1 binds to Nox5 and Nox2 but not Nox4. In addition to posttranslational actions, in primary cells, Cav-1 represses the mRNA and protein expression of Nox2 and Nox4 through inhibition of the NF-κB pathway. Last, in a mouse hypoxia model, the genetic ablation of Cav-1 increased the expression of Nox2 and Nox4 and exacerbated PH. Together, these results suggest that Cav-1 is a negative regulator of Nox function via two distinct mechanisms, acutely through direct binding and chronically through alteration of expression levels. Accordingly, the loss of Cav-1 expression in cardiovascular diseases such as PH may account for the increased Nox activity and greater production of ROS.  相似文献   

7.
Light-dependent generation of reactive oxygen species in cell culture media   总被引:6,自引:0,他引:6  
Cell culture media (RPMI 1640, Dulbecco’s Minimal Essential Medium and yeast extract-peptone-glucose medium) were found to oxidize dichlorodihydrofluorescein diacetate and dihydrorhodamine 123, and to generate spin adduct of 5,5′-dimethyl-1-pyrroline N-oxide, which indicates formation of reactive oxygen species (ROS). The production of ROS was light dependent. The main component of the media responsible for the generation of ROS was riboflavin, but tryptophan, tyrosine, pyridoxine, and folic acid enhanced the effect of riboflavin. These observations point to exposure of cells to ROS under in vitro culture conditions.  相似文献   

8.
Production of minute concentrations of superoxide (O2) and nitrogen monoxide (nitric oxide, NO) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance—a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2, hydrogen peroxide (H2O2), and NO. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2, H2O2, NO, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.  相似文献   

9.
Free radicals are reportedly involved in mucosal injury, including NH>••- derived from neutrophils caused gastric lesion formation, while Opact">•- or H2O2 derived from the xanthine oxidase system in endothelial cells was involved in neutrophil infiltration.  相似文献   

10.
TP53-induced glycolysis and apoptosis regulator (TIGAR) knockdown is proven to radiosensitize glioma cells, but the mechanisms are not fully understood. Thioredoxin-1 (TRX1) is a redox-sensitive oxidoreductase, which plays critical roles in DNA damage signal transduction via nuclear translocation in irradiated cells. Because the TRX1-dependent DNA damage signaling pathway relies on NADPH to maintain the reduced state of TRX1, and TIGAR functions to increase NADPH generation under oxidative stress, in this study, the role of TRX1 in TIGAR abrogation-induced radiosensitization was investigated. It was demonstrated that ionizing radiation (IR)-induced nuclear translocation of TRX1 was significantly inhibited by TIGAR interference and reversed by wild-type (WT)-TRX1 overexpression. In addition, WT-TRX1 overexpression could accelerate the process of DNA damage repair postponed by TIGAR knockdown in irradiated glioma cells. The reduction process of IR-oxidized TRX1 was also delayed by TIGAR knockdown but restored by WT-TRX1 overexpression. Therefore, we conclude that TIGAR knockdown-induced radiosensitization of glioma cells may be dependent on the inhibition of TRX1 nuclear translocation.  相似文献   

11.
The effect of x-rays on GSH and GSSG levels in blood was studied in mice and humans. An HPLC method that we recently developed was applied to accurately determine GSSG levels in blood. The glutathione redox status (GSH/GSSG) decreases after irradiation. This effect is mainly due to an increase in GSSG levels. Mice received single fraction radiotherapy, at total doses of 1.0 to 7.0 Gy. Changes in GSSG in mouse blood can be detected 10 min after irradiation and last for 6 h within a range of 2.0–7.0 Gy. The highest levels of GSSG (20.1 ± 2.9 ), a 4.7-fold increase as compared with controls) in mouse blood are found 2 h after radiation exposure (5 Gy). Breast and lung cancer patients received fractionated radiotherapy at total doses of 50.0 or 60.0 Gy, respectively. GSH/GSSG also decreases in humans in a dose–response fashion. Two reasons may explain the radiation-induced increase in blood GSSG: (a) the reaction of GSH with radiation-induced free radicals resulting in the formation of thyl radicals that react to produce GSSG; and (b) an increase of GSSG release from different organs (e.g., the liver) into the blood. Our results indicate that the glutathione redox ratio in blood can be used as an index of radiation-induced oxidative stress. © 1997 Elsevier Science Inc.  相似文献   

12.
Photoreceptor (PR) cells are prone to accumulation of reactive oxygen species (ROS) and oxidative stress. An imbalance between the production of ROS and cellular antioxidant defenses contributes to PR degeneration and blindness in many different ocular disease states. Yttrium oxide (Y2O3) nanoparticles (NPs) are excellent free radical scavengers owing to their nonstoichiometric crystal defects. Here we utilize a murine light-stress model to test the efficacy of Y2O3 NPs (~10–14 nm in diameter) in ameliorating retinal oxidative stress-associated degeneration. Our studies demonstrate that intravitreal injections of these NPs at doses ranging from 0.1 to 5.0 µM 2 weeks before acute light stress protect PRs from degeneration. This protection is reflected both structurally (i.e., decreased light-associated thinning of the outer nuclear layer) and functionally (i.e., preservation of scotopic and photopic electroretinogram amplitudes). We also observe preservation of structure and function when NPs are delivered immediately after acute light stress, although the magnitude of the preservation is smaller, and only doses ranging from 1.0 to 5.0 µM were effective. We show that the Y2O3 NPs are nontoxic and well tolerated after intravitreal delivery. Our results suggest that Y2O3 NPs have astonishing antioxidant benefits and, with further exploration, may be an excellent strategy for the treatment of oxidative stress associated with multiple forms of retinal degeneration.  相似文献   

13.
Ergothioneine (ESH), an aromatic thiol occurring in the human diet and which accumulates in particular cells, is believed to act as an antioxidant. However, its redox mechanism remains unclear and it does not seem to provide any advantage compared to other antioxidants, such as alkylthiols, which are better reducing agents and generally present in cells at higher levels. Here, we investigated by ESI–MS the products of ESH oxidation produced by neutrophils during oxidative burst and, to further elucidate ESH redox behavior, we also analyzed the oxidation products of the reaction of ESH with hypochlorite in cell-free solutions. Indeed, neutrophils are the main source of hypochlorite in humans. Furthermore, we also tested other biologically relevant oxidants, such as peroxynitrite and hydrogen peroxide. Our results indicate that treatment of human neutrophils with phorbol 12-myristate 13-acetate in the presence of ESH leads to a remarkable production of the sulfonated form (ESO3H), a compound never described before, and hercynine (EH), the desulfurated form of ESH. Similar results were obtained when ESH was subjected to cell-free oxidation in the presence of hypochlorite, as well as hydrogen peroxide or peroxynitrite. Furthermore, when the disulfide of ESH was reacted with those oxidants, we found that it was also oxidized, with production of EH and ESO3H, whose amount was dependent on the oxidant strength. These data reveal a unique ESH redox behavior, entirely different from that of alkylthiols, and suggest a mechanism, so far overlooked, through which ESH performs its antioxidant action in cells.  相似文献   

14.
This study monitored plasma and skeletal muscle markers of free-radical-mediated damage following maximum eccentric and concentric exercise, to examine the potential role of free radicals in exercise-induced muscle damage. Fourteen male volunteers performed either (1) a bout of 70 maximum eccentric and a bout of 70 maximum concentric muscle actions of the forearm flexors (the bouts being separated by 4 weeks; n = 8) or (2) a bout of 80 maximum eccentric and a bout of 80 maximum concentric muscle actions of the knee extensors (the bouts being separated by 1 week; n=6). Plasma markers of lipid peroxidation, thiobarbituric acid-reactive substances (TBARS) and diene-conjugated compounds (DCC) were monitored in the arm protocol and skeletal muscle markers of oxidative lipid and protein damage, malondialdehyde (MDA) and protein carbonyl derivatives (PCD) respectively, were monitored in the leg protocol. In both protocols, the contralateral limb was used for the second bout and the order of the bouts was randomised between limbs. Repeated measures ANOVA indicated significant changes from baseline following eccentric arm work on the measures of serum creatine kinase activity (P < 0.05), maximum voluntary torque production (P < 0.01) and relaxed arm angle (P < 0.01). Subjective muscle soreness peaked 2 days after eccentric arm work (P < 0.05, Wilcoxon test). However, there were no changes in the plasma levels of TBARS or DCC following the eccentric or concentric arm exercise. Immediately after concentric leg exercise, skeletal muscle PCD concentrations was significantly higher than that observed immediately after eccentric work (P < 0.05). However, no significant difference between the eccentric and concentric knee extensor bouts was observed on the measure of skeletal muscle MDA concentration. The results of this study offer no support for the involvement of oxygen free radicals in exercise-induced muscle damage.  相似文献   

15.
Previous studies have shown that, during infection, HIV-1 clade B and clade C differentially contribute to the neuropathogenesis and development of HIV-associated neurocognitive disorders (HANDs). The low-molecular-weight tripeptide glutathione (GSH) alters the redox balance and leads to the generation of reactive oxygen species, which play a significant role in the neuropathogenesis of HANDs. We hypothesized that the HIV-1 clade B and clade C viruses and their respective Tat proteins exert differential effects on monocyte-derived immature dendritic cells (IDCs) and neuroblastoma cells (SK-N-MC) by redox activation, which leads to immunoneuropathogenesis. The GSH/GSSG ratio and mRNA expression levels and protein modification of glutathione synthetase (GSS), glutathione peroxidase 1 (GPx1), superoxide dismutase 1 (SOD1), and catalase (CAT) were analyzed in IDCs infected with HIV-1 clade B or clade C as well as in cells treated with the respective Tat proteins. The results indicated that HIV-1 clade B virus and its Tat protein significantly increased the production of reactive oxygen species and reduced the GSH/GSSG ratio and subsequent downregulation of gene expression and protein modification of GSS, GPx1, SOD1, and CAT compared to infection with the clade C virus or treatment with the clade C Tat protein. Thus, our studies demonstrate that HIV-1 clades B and C exert differential effects of redox expression and thiol modification. HIV-1 clade B potentially induces oxidative stress, leading to more immunoneuropathogenesis than infection with HIV-1 clade C.  相似文献   

16.
17.
Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling.  相似文献   

18.
Although oxidative damage contributes to many pathologies the use of naturally occurring, small-molecule antioxidants as therapies for these disorders has not been successful. Here I discuss some of the reasons this may be so. Paramount among these are the difficulties in delivering enough of the antioxidant to the intracellular location required to decrease pathological oxidative damage and the challenge of assessing whether the intervention has actually decreased oxidative damage in the patient to a therapeutically useful extent. To develop effective antioxidant therapies the best strategy may be to create new chemical entities designed to detoxify a defined reactive oxygen species-dependent process that underlies a particular pathology, in the same way a conventional drug is designed to modulate a biochemical process, rather than applying antioxidants in an unfocused manner. In developing new antioxidants it will be useful to utilize endogenous processes to activate and recycle the molecules in parallel with the targeting of compounds to cells and organelles in ways that are not limited by the constraints that impair the distribution of endogenous antioxidants. In short, I suggest that the future development of antioxidant therapies should be viewed as an arm of drug development, utilizing focused approaches similar to those of medicinal chemistry and pharmacology, rather than as a branch of nutrition.  相似文献   

19.
Aortic rings, 4 mm in length, were obtained from rats and placed on isometric force transducers in oxygenated Krebs buffer. Following a period of stabilization, the cumulative dose response relationship to norepinephrine was assessed. The vessels were washed and allowed to return to baseline in Krebs buffer containing xanthine (0.5 mM). Xanthine oxidase (0.1 U/ml) was then added to the bath and vessels incubated for 30 min. The vessels were resuspended in Krebs buffer and cumulative dose-response curves to norepinephrine reevaluated. The results indicate that generation of reactive oxygen metabolites by xanthine/xanthine oxidase decreases the pD2 from 7.80 ± 0.04 to 7.40 ± 0.09 with the endothelium intact. Removal of the endothelium did not attenuate the contractile dysfunction, indicating that endothelial-derived metabolites were not mediating the loss of vasoconstrictor effectiveness. Maximal tension development did not differ between normal and oxidized vessel rings. Introduction of oxypurinol (0.2 mg/ml) to the bath prevented the loss of constrictor responsiveness, thereby confirming that all of the oxidants were derived from the xanthine/xanthine oxidase reaction. Superoxide dismutase (200 U/ml) partially prevented the loss of norepinephrine responsiveness produced by xanthine oxidase-derived radicals. The pD2 in the SOD + xanthine/xanthine oxidase-treated vessels rings (7.19 ± 0.11) was significantly lower tan control vessel rings (7.49 ± 0.04) and significantly higher than xanthine/xanthine oxidase-treated vessels (6.89 ± 0.06). Catalase (1000 U/ml) also partially attenuated the loss of vascular norepinephrine responsiveness. The pD2 for the catalase + xanthine/xanthine oxidase-treated vessels (7.15 ± 0.02) was significantly lower than control vessels (7.39 ± 0.07)and significantly higher than the xanthine/xanthine oxidase-treated vessels (6.82 ± 0.11). The pD2 of vessels treated with a combination of SOD and catalase (7.40 ± 0.10) did not differ from control vessels (7.49 ± 0.12). The results of this study indicate that reactive species produced by the interaction of xanthine with xanthine oxidase depress norepinephrine-induced vasoconstriction. The loss of vasoconstrictor responsiveness appears to involve both superoxide and hydrogen peroxide.  相似文献   

20.
Dendritic cells (DC) sense infection in their local microenvironment and respond appropriately in order to induce T cell immunity. This response is mediated in part via the mitogen-activated protein kinase (MAPK) pathways. Hydrogen peroxide is present frequently in the inflammatory DC milieu and is known to activate MAPK. Therefore this study examines the role of hydrogen peroxide, both alone and in combination with lipopolysaccharide (LPS), in the regulation of activation of two key MAPK, p38 and JNK, regulation of phenotype, and regulation of apoptosis in human monocyte-derived DC. At low concentrations, hydrogen peroxide activates p38, but does not alter DC phenotype. At higher concentrations, hydrogen peroxide activates both p38 and JNK. Activation of JNK, which is associated with inhibition of tyrosine phosphatases in DC, is linked to the induction of DC apoptosis. An upstream JNK inhibitor (CEP11004) and a competitive JNK inhibitor (SP600125) both partially protected the DC from the proapoptotic effects of hydrogen peroxide. Unexpectedly, hydrogen peroxide and LPS synergize in inducing JNK activation and DC apoptosis. JNK-mediated apoptosis may limit damaging immune responses against neoepitopes generated by modification of self-antigens by reactive oxygen species present at sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号