首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.  相似文献   

2.
Nakao LS  Iwai LK  Kalil J  Augusto O 《FEBS letters》2003,547(1-3):87-91
Methionine sulfoxide is a post-translational protein modification that has been receiving increasing attention in the literature. Here we used electron paramagnetic resonance spin trapping techniques to show that free and peptide-bound methionine sulfoxide is oxidized by hydrogen peroxide/iron(II)-EDTA and peroxynitrite through the intermediacy of the hydroxyl radical to produce both *CH3 and *CH2CH2CH radicals. The results indicate that methionine sulfoxide residues are important targets of reactive oxygen- and nitrogen-derived species in proteins. Since the produced protein-derived radicals can propagate oxidative damage, the results add a new antioxidant route for the action of the enzyme peptide methionine sulfoxide reductase.  相似文献   

3.
Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid moieties of low-density lipoprotein is of particular interest due to its potential role in the unregulated uptake of lipids and cholesterol by macrophages; this may contribute to the initial stage of foam cell formation in atherosclerosis. In the study reported here, we examined the comparative time-courses of lipid and protein oxidation during copper-ion-mediated oxidation of low-density lipoprotein. We show that there is an early, lipid-mediated loss of 40-50% of the Trp residues of the apoB100 protein. There is no comparable loss over an identical period during the copper-ion-mediated oxidation of lipid-free BSA. Concomitant with Trp loss, the antioxidant alpha-tocopherol is consumed with subsequent extensive lipid peroxidation. Further changes to the protein, including the copper-ion-dependent 3.5-fold increase in 3,4-dihydroxyphenylalanine and the copper-ion-independent 3-5-fold increase in o-tyrosine, oxidation products of Tyr and Phe, respectively, only occur after maximal lipid peroxidation. Long incubation periods result in depletion of 3,4-dihydroxyphenylalanine, presumably reflecting further oxidative changes. Overall, copper-ion-mediated oxidation of LDL appears to proceed initially by lipid radical-dependent processes, even though some of the earliest detectable changes occur on the apoB100 protein. This is followed by extensive lipid peroxidation and subsequent additional oxidation of aromatic residues on apoB100, though it is not yet clear whether this late protein oxidation is lipid-dependent or occurs as a result of direct radical attack.  相似文献   

4.
It has been recently shown that the inhibition of apolipoprotein A-I (apoAI) reverse cholesterol transport activity during oxidation of HDL by myeloperoxidase may involve myeloperoxidase electron transfer pathways other than those leading to tyrosine chlorination. To better understand how such mechanisms might be initiated, the role of semioxidized Tyr and Trp residues in loss of apoAI and apolipoprotein A-II (apoAII) integrity has been assessed using selective Trp and Tyr one-electron oxidation by *Br2(-) radical-anions in HDL3 as well as in unbound apoAI and apoAII. Behavior of these radicals in apolipoprotein B of LDL has also been assessed. Formation of semioxidized Tyr in HDL3 is followed by partial repair during several milliseconds via reaction with endogenous alpha-tocopherol to form the alpha-tocopheroxyl radical. Subsequently, 2% of alpha-tocopheroxyl radical is repaired by HDL3 carotenoids. With LDL, a faster repair of semioxidized Tyr by alpha-tocopherol is observed, but carotenoid repair of alpha-tocopheroxyl radical is not. Only a small fraction of HDL3 particles contains alpha-tocopherol and carotenoids, which explains limited repair of semioxidized Tyr by alpha-tocopherol. All LDL particles normally contain multiple alpha-tocopherol and carotenoid molecules, and the lack of repair of alpha-tocopheroxyl radical by carotenoids probably results from hindered mobility of carotenoids in the lipid core. Western blots of gamma-irradiated HDL3 comparable to those reported for apoAI myeloperoxidase oxidation show that the incomplete repair of semioxidized Tyr and Trp induces apoAI and apoAII permanent damage including formation of a heterodimer of one apoAI with a monomeric apoAII at about 36 kDa.  相似文献   

5.
Protein oxidation, mediated by peroxyl radicals derived from 2,2-azobis(2-amidinopropane) dihydrochloride is sided by a significant visible chemiluminescence (CL). The light emission shows a complex dependence with the protein concentration and with the incubation time that cannot be interpreted in terms of peroxyl radicals recombination (Russell's mechanism). In all the systems studied, the chemiluminescent behavior requires to consider the participation of several oxidation products as precursors of the excited states. These compounds lead to the formation of excited states by competing radical and nonradical mediated pathways. These intermediates (most probably hydroperoxide-like compounds) would arise from the oxidation of Trp and Tyr residues. This conclusion is based on the similarity of the time profile of the chemiluminescence observed in the oxidation of the free amino acids and the proteins, both in the presence of and absence of free-radical scavengers.  相似文献   

6.
The rate constant of the one-electron oxidation of the tryptophan (Trp) or tyrosine (Tyr) residues by Br- X 2 radical anions is strongly decreased when the peptides are bound to DNA. Oxidation by N X 3 is much less affected by binding. These results can be explained by electrostatic repulsion between the charged polyphosphate backbone and the Br- X 2 radicals. Once oxidized, the interacting aromatic residues react with the DNA in a first order process with a rate constant of the order 10(3) s-1. These results have been extended to the single strand binding protein: the product of gene 32 of phage T4 (gp 32). The pulse radiolysis study suggests that one Trp residue of the protein oxidized by the Br- X 2 radicals reacts with the DNA in the complex while one Tyr residue is buried upon association. It is also shown that the exposure of Trp and Tyr residues to radical attack depends on whether the T4 SSB protein is bound to native or heat-denatured DNA.  相似文献   

7.
Peroxynitrite is a potent oxidant that contributes to tissue damage in neurodegenerative disorders. We have previously reported that treatment of rat brain synaptosomes with peroxynitrite induced post-translational modifications in pre- and post-synaptic proteins and stimulated soluble N -ethylmaleimide sensitive fusion proteins attachment receptor complex formation and endogenous glutamate release. In this study we show that, following peroxynitrite treatment, the synaptic vesicle protein synaptophysin (SYP) can be both phosphorylated and nitrated in a dose-dependent manner. We found that tyrosine-phosphorylated, but not tyrosine-nitrated, SYP bound to the src tyrosine kinase and enhanced its catalytic activity. These effects were mediated by direct and specific binding of the SYP cytoplasmic C-terminal tail with the src homology 2 domain. Using mass spectrometry analysis, we mapped the SYP C-terminal tail tyrosine residues modified by peroxynitrite and found one nitration site at Tyr250 and two phosphorylation sites at Tyr263 and Tyr273. We suggest that peroxynitrite-mediated modifications of SYP may be relevant in modulating src signalling of synaptic terminal in pathophysiological conditions.  相似文献   

8.
Dimitri A. Svistunenko 《BBA》2005,1707(1):127-155
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the π-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; αTyr42, αTrp14, βTrp15, βCys93, (αTyr24−αHis20), all in the α- and β-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

9.
The nitration of protein tyrosine residues represents an important post-translational modification during development, oxidative stress, and biological aging. To rationalize any physiological changes with such modifications, the actual protein targets of nitration must be identified by proteomic methods. While several studies have used proteomics to screen for 3-nitrotyrosine-containing proteins in vivo, most of these studies have failed to prove nitration unambiguously through the actual localization of 3-nitrotyrosine to specific sequences by mass spectrometry. In this paper we have applied sequential solution isoelectric focusing and SDS-PAGE for the proteomic characterization of specific 3-nitrotyrosine-containing sequences of nitrated target proteins in vivo using nanoelectrospray ionization-tandem mass spectrometry. Specifically, we analyzed proteins from the skeletal muscle of 34-month-old Fisher 344/Brown Norway F1 hybrid rats, a well accepted animal model for biological aging. We identified the 3-nitrotyrosine-containing sequences of 11 proteins, including cytosolic creatine kinase, tropomyosin 1, glyceraldehyde-3-phosphate dehydrogenase, myosin light chain, aldolase A, pyruvate kinase, glycogen phosphorylase, actinin, gamma-actin, ryanodine receptor 3, and neurogenic locus notch homolog. For creatine kinase and neurogenic locus notch homolog, two 3-nitrotyrosine-containing sequences were identified, i.e. at positions 14 and 20 for creatine kinase and at positions 1175 and 1205 for the neurogenic locus notch homolog. The selectivity of the in vivo nitration of creatine kinase at Tyr14 and Tyr20 does not correspond to the product selectivity in vitro, where exclusively Tyr82 was nitrated when creatine kinase was exposed to peroxynitrite. The latter experiments demonstrate that the in vitro exposure of an isolated protein to peroxynitrite may not always be a good model to mimic protein nitration in vivo.  相似文献   

10.
Myeloperoxidase is released from stimulated polymorphonuclear leukocytes at inflammatory loci. Besides its bactericidal activity, it interacts with human serum albumin that is essential for the endothelial uptake of myeloperoxidase and its contribution in regulation of the blood vessel tonus. Here, we investigated which kinds of modification dominate in the albumin protein by the myeloperoxidase-hydrogen peroxide system at physiological pH. In the presence of chloride, bromide, and nitrite, the myeloperoxidase-hydrogen peroxide system caused an oxidation, bromination, and nitrosylation/nitration of eight amino acid residues of albumin as detected by fragment analysis of tryptic digests with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. An oxygen was incorporated into the methionines Met147, Met353, and Met572 as well as into the tryptophan Trp238. In the case of methionine residues, this oxygen was derived from the water phase as shown using 18O-enriched water. Nitrosylation/nitration was observed at the tryptophan Trp238 and the tyrosines Tyr162, Tyr425, and Tyr476 according to the mass shift of 29 Da and 45 Da. The incorporation of one or two bromines was found into the tyrosines Tyr425 and Tyr476. We did not observe any chlorination of albumin fragments. Thus, myeloperoxidase modifies in multiple ways amino acid residues in human serum albumin.  相似文献   

11.
The reaction between hydroperoxides and the haem group of proteins and enzymes is important for the function of many enzymes but has also been implicated in a number of pathological conditions where oxygen binding proteins interact with hydrogen peroxide or other peroxides. The haem group in the oxidized Fe3+ (ferric) state reacts with hydroperoxides with a formation of the Fe4+=O (oxoferryl) haem state and a free radical primarily located on the pi-system of the haem. The radical is then transferred to an amino acid residue of the protein and undergoes further transfer and transformation processes. The free radicals formed in this reaction are reviewed for a number of proteins and enzymes. Their previously published EPR spectra are analysed in a comparative way. The radicals directly detected in most systems are tyrosyl radicals and the peroxyl radicals formed on tryptophan and possibly cysteine. The locations of the radicals in the proteins have been reported as follows: Tyr133 in soybean leghaemoglobin; alphaTyr42, alphaTrp14, betaTrp15, betaCys93, (alphaTyr24-alphaHis20), all in the alpha- and beta-subunits of human haemoglobin; Tyr103, Tyr151 and Trp14 in sperm whale myoglobin; Tyr103, Tyr146 and Trp14 in horse myoglobin; Trp14, Tyr103 and Cys110 in human Mb. The sequence of events leading to radical formation, transformation and transfer, both intra- and intermolecularly, is considered. The free radicals induced by peroxides in the enzymes are reviewed. Those include: lignin peroxidase, cytochrome c peroxidase, cytochrome c oxidase, turnip isoperoxidase 7, bovine catalase, two isoforms of prostaglandin H synthase, Mycobacterium tuberculosis and Synechocystis PCC6803 catalase-peroxidases.  相似文献   

12.
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.  相似文献   

13.
A model for the complex between E. coli RNase HI and the DNA/RNA hybrid (previously refined by molecular dynamics simulations) was used to determine the impact of the internucleotide linkage modifications (either 3-O-CH2-P-O-5' or 3-O-P-CH2-O-5) on the ability of the modified-DNA/RNA hybrid to create a complex with the protein. Modified internucleotide linkages were incorporated systematically at different positions close to the 3-end of the DNA strand to interfere with the DNA binding site of RNase H. Altogether, six trajectories were produced (length 1.5ns). Mutual hydrogen bonds connecting both strands of the nucleic acids hybrid, DNA with RNase H, RNA with RNase H, and the scissile bond with the Mg++. 4H2O chelate complex (bound in the active site) were analyzed in detaiL Many residues were involved in binding of the DNA (Arg88, Asn84, Trp85, Trp104, Tyr73, Lys99, Asn100, Thr43, and Asn 16) and RNA (Gln76, Gln72, Tyr73, Lys122, Glu48, Asn44, and Cys13) strand to the substrate-binding site of the RNase H enzyme. The most remarkable disturbance of the hydrogen bonding net was observed for structures with modified internucleotide linkages positioned in a way to interact with the Trp104, Tyr73, Lys99, and Asn100 residues (situated in the middle of the DNA binding site, where a cluster of Trp residues forms a rigid core of the protein structure).  相似文献   

14.
The human eye is chronically exposed to light of wavelengths >300 nm. In the young human lens, light of wavelength 300-400 nm is predominantly absorbed by the free Trp derivatives kynurenine (Kyn), 3-hydroxykynurenine (3OHKyn), and 3-hydroxykynurenine-O-beta-D-glucoside (3OHKynG). These ultraviolet (UV) filter compounds are poor photosensitizers. With age, the levels of the free UV filters in the lens decreases and those of protein-bound UV filters increases. The photochemical behavior of these protein-bound UV filters and their role in UV damage are poorly elucidated and are examined here. UVA illumination of protein-bound UV filters generated peroxides (principally H2O2) in a metabolite-, photolysis-time-, and wavelength-dependent manner. Unmodified proteins, free Trp metabolites, and Trp metabolites that do not bind to lens proteins gave low peroxide yields. Protein-bound 3OHKyn (principally at Cys residues) yielded more peroxide than comparable Kyn and 3OHKynG adducts. Studies using D2O and sodium azide implicated 1O2 as a key intermediate. Illumination of the protein-bound adducts also yielded protein-bound Tyr oxidation products (DOPA, di-tyrosine) and protein cross-links via alternative mechanisms. These data indicate that the covalent modification of lens proteins by Kyn derivatives yields photosensitizers that may enhance oxidation in older lenses and contribute to age-related nuclear cataract.  相似文献   

15.
In this work, we investigated the reaction of ferric Mycobacterium tuberculosis truncated hemoglobin O (trHbO) with hydrogen peroxide. Stopped-flow spectrophotometric experiments under single turnover conditions showed that trHbO reacts with H(2)O(2) to give transient intermediate(s), among which is an oxyferryl heme, different from a typical peroxidase Compound I (oxyferryl heme pi-cation radical). EPR spectroscopy indicated evidence for both tryptophanyl and tyrosyl radicals, whereas redox titrations demonstrated that the peroxide-treated protein product retains 2 oxidizing eq. We propose that Compound I formed transiently is reduced with concomitant oxidation of Trp(G8) to give the detected oxoferryl heme and a radical on Trp(G8) (detected by EPR of the trHbO Tyr(CD1)Phe mutant). In the wild-type protein, the Trp(G8) radical is in turn reduced rapidly by Tyr(CD1). In a second cycle, Trp(G8) may be reoxidized by the ferryl heme to yield ferric heme and two protein radicals. In turn, these migrate to form tyrosyl radicals on Tyr(55) and Tyr(115), which lead, in the absence of a reducing substrate, to oligomerization of the protein. Steady-state kinetics in the presence of H(2)O(2) and the one-electron donor 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) indicated that trHbO has peroxidase activity, in accord with the presence of typical peroxidase intermediates. These findings suggest an oxidation/reduction function for trHbO and, by analogy, for other Group II trHbs.  相似文献   

16.
Abstract

Synthesis of guanylyl(3′→5′)cytidine catalysed by RNase T1 variants (Tyr42Trp, Tyr24Trp and GluSSAla) was studied in frozen aqueous systems at-10°C and in solution at 0°C. Freezing the reaction mixture resulted in significantly enhanced dinucleoside monophosphate yields independently of the effect of mutation on substrate binding and catalytic mechanism. We assume that the protonation state of the catalytic residues is influenced by freezing, possibly due to conformational changes of the enzyme proteins.  相似文献   

17.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H2 O2) or hydroxyl radicals produced by y radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. Gamma radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met = Cys > Lys > Ile + Leu > Gly > Pro = Phe > Thr + Ala > Trp = Ser > Arg > Asp + Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met His > Ile + Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by gamma radiation.  相似文献   

18.
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O(·)) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O(·) to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues.  相似文献   

19.
The method for separation of emission (EM) and excitation (EX) spectra of a protein into EM and EX spectra of its tyrosine (Tyr) and tryptophan (Trp) residues was described. The method was applied to analysis of Escherichia coli RecA protein and its complexes with Mg(2+), ATPgammaS or ADP, and single-stranded DNA (ssDNA). RecA consists of a C-terminal domain containing two Trp and two Tyr residues, a major domain with five Tyr residues, and an N-terminal domain without these residues (R. M. Story, I. T. Weber, and T. A. Steitz (1992) Nature (London) 355, 374-376). Because the fluorescence of Tyr residues in the C-terminal domain was shown to be quenched by energy transfer to Trp residues, Trp and Tyr fluorescence of RecA was provided by the C-terminal and the major domains, respectively. Spectral analysis of Trp and Tyr constituents revealed that a relative spatial location of the C-terminal and the major domains in RecA monomers was different for their complexes with either ATPgammaS or ADP, whereas this location did not change upon additional interaction of these complexes with ssDNA. Homogeneous (that is, independent of EX wavelength) and nonhomogeneous (dependent on EX wavelength) types of Tyr and Trp fluorescence quenching were analyzed for RecA and its complexes with nucleotide cofactors and ssDNA. The former was expected to result from singlet-singlet energy transfer from these residues to adenine of ATPgammaS or ADP. By analogy, the latter was suggested to proceed through energy transfer from high vibrational levels of the excited state of Trp and Tyr residues to the adenine. In this case, for correct calculation of the overlap integral, Trp and Tyr donor emission spectra were substituted by the spectral function of convolution of emission and excitation spectra that resulted in a significant increase of the overlap integral and gave an explanation of the nonhomogeneous quenching of Trp residues in the C-terminal domain.  相似文献   

20.
In this work, the fluorescence of glutamine-binding protein (GlnBP) and its complex with glutamine (GlnBP/Gln) in native and unfolded forms was studied. The experimental data were interpreted on the basis of the results of the analysis of Trp and Tyr microenvironments taking into the account the data for GlnBP mutated forms Trp32Phe(Tyr) and Trp220Phe(Tyr), which have been obtained by Axelsen et al. (Biophys. J. 1991, 60, 650-659). This allowed us to explain the negligible contribution of Tyr residues to the bulk fluorescence of the native protein, the similarity of the fluorescence characteristics of GlnBP and GlnBP/Gln, and the uncommon effect of the excess of the fluorescence intensity at 365 nm (Trp emission) upon excitation at 297 nm respect to the excitation at 280 nm. The last effect is explained by the spectral dependence of the Trp 32 and Trp 220 contributions to the protein absorption. The protein Trp fluorescence dependence on the excitation wavelength must be taken into account for the evaluation of the Tyr residues contribution to the bulk fluorescence of protein, and in principle, it also may be used for the development of an approach for the decomposition of a multicomponent protein fluorescence spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号