首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐acetylglucosaminyltransferase V (GnT‐V) has been reported to be positively associated with tumor progression, but its mechanism still remains unknown. In the present study, we found that GnT‐V overexpression not only changed the glycosylation of receptor protein tyrosine phosphatase kappa (RPTPκ) but also decreased its protein level. Moreover, GnT‐V overexpression decreased cell calcium‐independent adhesion and increased the tyrosine phosphorylation level of β‐catenin, in which RPTPκ played an important role. Since RPTPκ has an RXKR motif, which is a favored cleavage site for furin, we used furin inhibitor to further explore the effect of RPTPκ on the change of cell adhesion and β‐catenin signaling induced by GnT‐V. Our results showed that preventing RPTPκ cleavage rescued the above effects of GnT‐V, suggesting that furin cleavage could be one of the factors for RPTPκ to regulate cell adhesion and β‐catenin signaling in GnT‐V overexpression cell lines. In addition, the increased tyrosine phosphorylation level of β‐catenin was associated with the increased nuclear level of β‐catenin and downstream signaling molecules such as c‐myc and cyclin D1 that were associated with cell proliferation. Our results suggest that GnT‐V could decrease human hepatoma SMMC‐7721 cell adhesion and promote cell proliferation partially through RPTPκ. J. Cell. Biochem. 109: 113–123, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
Acquisition of metastatic potential is accompanied by changes in cell surface N-glycosylation. One of the best-studied changes is increased expression of N-acetylglucosaminyltransferase V enzyme (GnT-V) and its products, β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers. In this study we demonstrate that during the transition from the vertical growth phase (VGP) (WM793 cell line) to the metastatic stage (WM1205Lu line), β1,6 glycosylation of melanoma cell surface proteins increases as a consequence of elevated expression of the GnT-V-encoding Mgat-5 gene. Treatment with swainsonine led to reduced cell motility on fibronectin in both cell lines; the effect was stronger in metastatic cells, probably due to the higher content of GlcNAc β1,6-branched glycans on the main fibronectin receptors – integrins α5β1 and α3β1. Our results show that GlcNAc β1,6 N-glycosylation of cell surface receptors, which increases with the aggressiveness of melanoma cells, is an important factor influencing melanoma cell migration.  相似文献   

4.
5.
In tumor cells, alterations in cellular glycosylation may play a key role in their metastatic behavior. Using small interfering RNA against GnT-V, we found that the expression of GnT-V and β1,6GlcNAc branching were significantly reduced which was particularly accompanied by the arrest in both cell migration and invasion as compared to the negative control. Moreover, the suppressed GnT-V expression by siRNA technique inactivated the signaling molecules including Rac1, cofilin, Erk and Akt, and activated RhoA levels in cells lacking GnT-V, but revealed no impact on Cdc42 activity. All these notions disclose for the first time that GnT-V and β1, 6GlcNAc branching mediate the cell migration and invasion in Rac1-positive and RhoA-negative regulatory manners. Yunxue Zhao and Jing Li contributed equally to this work.  相似文献   

6.
The relations between the structure of cell surface N-glycans to cell behaviors were studied in H7721 human hepatocarcinoma cell line, which predominantly expressed complex-type N-glycans on the surface. 1-Deoxymannojirimycin (DMJ) and swaisonine (SW), the specific inhibitor of Golgi alpha-mannosidase II or I, were selected to block the processing of N-glycans at the steps of high mannose and hybrid type respectively. All-trans retinoic acid (ATRA) and antisense cDNA of N-acetylglucosaminyltransferase-V (GnT-V) were used to suppress the expression of GnT-V and decreased the GlcNAc beta1,6-branching or tri-/tetra-antennary structure of surface N-glycans. The structural alterations of N-glycans were verified by sequential lectin affinity chromatography of [3H] mannose-labeled glycans isolated from the cell surface. The cell adhesions to fibronectin (Fn) and human umbilical vein epithelial cell (HUVEC), as well as cell migration (including chemotaxis and invasion) were selected as the parameters of cell behaviors. It was found that cell adhesion and migration were significantly decreased in SW and DMJ treated cells, suggesting that complex type N-glycan is critical for the above cell behaviors. ATRA and antisense GnTV enhanced cell adhesion to Fn but reduce cell adhesion to HUVEC and cell migration. These results reveal that cell surface complex-type N-glycans with GlcNAc beta1,6 branch are more effective than those without this branch in the cell adhesion to HUVEC and cell migration, but N-glycan without GlcNAc beta1,6-branch is the better one in mediating the cell adhesion to Fn. The integrin alpha5beta1 (receptor of Fn) on cell surface was unchanged by DMJ and SW. In contrast, ATRA up regulated alpha5, but not beta1, and antisense GnT-V decreased both alpha5 and beta1. This findings suggest that both the structure of N-glycan and the expression of integrin on cell surface are two of the important factors in the determination of cell adhesion to Fn, a complex biological process.  相似文献   

7.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of beta1,6-GlcNAc branching of N-glycans, which contributes to metastasis. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulting in the suppression of metastasis. It has long been hypothesized that the suppression of GnT-V product formation by the action of GnT-III would also exist in vivo, which will consequently lead to the inhibition of biological functions of GnT-V. To test this, we draw a comparison among MKN45 cells, which were transfected with GnT-III, GnT-V, or both, respectively. We found that alpha3beta1 integrin-mediated cell migration on laminin 5 was greatly enhanced in the case of GnT-V transfectant. This enhanced cell migration was significantly blocked after the introduction of GnT-III. Consistently, an increase in bisected GlcNAc but a decrease in beta1,6-GlcNAc-branched N-glycans on integrin alpha3 subunit was observed in the double transfectants of GnT-III and GnT-V. Conversely, GnT-III knockdown resulted in increased migration on laminin 5, concomitant with an increase in beta1,6-GlcNAc-branched N-glycans on the alpha3 subunit in CHP134 cells, a human neuroblastoma cell line. Therefore, in this study, the priority of GnT-III for the modification of the alpha3 subunit may be an explanation for why GnT-III inhibits GnT-V-induced cell migration. Taken together, our results demonstrate for the first time that GnT-III and GnT-V can competitively modify the same target glycoprotein and furthermore positively or negatively regulate its biological functions.  相似文献   

8.
N-Acetylglucosaminyltransferase V (GnT-V) catalyzes the β1,6 branching of N-acetylglucosamine on N-glycans. GnT-V expression is elevated during malignant transformation in various types of cancer. However, the mechanism by which GnT-V promotes cancer progression is unclear. To characterize the biological significance of GnT-V, we established GnT-V transgenic (Tg) mice, in which GnT-V is regulated by a β-actin promoter. No spontaneous cancer was detected in any organs of the GnT-V Tg mice. However, GnT-V expression was up-regulated in GnT-V Tg mouse skin, and cultured keratinocytes derived from these mice showed enhanced migration, which was associated with changes in E-cadherin localization and epithelial-mesenchymal transition (EMT). Further, EMT-associated factors snail, twist, and N-cadherin were up-regulated, and cutaneous wound healing was accelerated in vivo. We further investigated the detailed mechanisms of EMT by assessing EGF signaling and found up-regulated EGF receptor signaling in GnT-V Tg mouse keratinocytes. These findings indicate that GnT-V overexpression promotes EMT and keratinocyte migration in part through enhanced EGF receptor signaling.  相似文献   

9.
Aberrant glycosylation of human tissue inhibitor of metalloproteinase-1 (TIMP-1) by N-acetylglucosaminyltransferase-V (GnT-V) was previously reported to be related to cancer progression. Here, we report on the antibodies recognizing the structural features initiated by an addition of N-linked β(1,6)-N-acetylglucosamine (GlcNAc) branch by GnT-V on TIMP-1. Two glycoforms of TIMP-1, TIMP1-L produced in Lec4 cells without GnT-V activity and TIMP1-B in GnT-V overexpressing transfectant cells, were purified from culture supernatant and used for generation of antibodies. TIMP1-L was injected in the left hind footpad of mice as decoy and TIMP1-B in the right hind footpad as immunogen. Phage-displayed scFv library was constructed from the B cells retrieved from the right popliteal lymph nodes and subjected to panning and screening. Phage ELISA of individual clones revealed the scFv clones with preferential binding activity to TIMP1-B, and they were converted into an scFv-Fc format for further characterization of binding specificity. Glycan binding assay of an antibody, 1-9F, revealed its differential specificity toward an extension of glycan structure initiated with β(1,6)-GlcNAc linkage and terminally decorated with a sialic acid. This study demonstrates feasibility of a new strategy combining decoy immunization with phage display for the efficient generation of antibodies tracking down structural features of different glycoforms.  相似文献   

10.
Changes in the expression of glycosyltransferases that branch N-linked glycans can alter the function of several types of cell surface receptors and a glucose transporter. To study in detail the mechanisms by which aberrant N-glycosylation caused by altered N-acetylglucosaminyltransferase V(GnT-V, GnT-Va, and Mgat5a) expression can regulate the invasiveness-related phenotypes found in some carcinomas, we utilized specific small interfering RNA (siRNA) to selectively knock down GnT-V expression in the highly metastatic and invasive human breast carcinoma cell line, MDA-MB231. Knockdown of GnT-V by siRNA expression had no effect on epidermal growth factor receptor expression levels but lowered expression of N-linked beta(1,6)-branching on epidermal growth factor receptor, as expected. Compared with control cells, knockdown of GnT-V caused significant inhibition of the morphological changes and cell detachment from matrix that is normally seen after stimulation with epidermal growth factor (EGF). Decreased expression of GnT-V caused a marked inhibition of EGF-induced dephosphorylation of focal adhesion kinase (FAK), consistent with the lack of cell morphology changes in the cells expressing GnT-V siRNA. The attenuation of EGF-mediated phosphorylation and activation of the tyrosine phosphatase SHP-2 was dramatically observed in GnT-V knockdown cells, and these effects could be rescued by reintroduction of GnT-V into these cells, indicating that reduced EGF-mediated activation of SHP-2 was GnT-V related. Concomitantly, knockdown of GnT-V caused reduced EGF-mediated ERK signaling and tumor cell invasiveness-related phenotypes, including effects on actin rearrangement and cell motility. No changes in EGF binding were observed, however, after knockdown of GnT-V. Our results demonstrate that decreased GnT-V activity due to siRNA expression in human breast carcinoma cells resulted in an inhibition of EGF-stimulated SHP-2 activation and, consequently, caused attenuation of the dephosphorylation of FAK induced by EGF. These effects suppressed EGF-mediated downstream signaling and invasiveness-related phenotypes and suggest GnT-V as a potential therapeutic target.  相似文献   

11.
Glycosylation is one of the most abundant posttranslational modification reactions, and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structure (glycan) are associated with many physiological and pathological events, including cell adhesion, migration, cell growth, cell differentiation and tumor invasion. Glycosylation reactions are catalyzed by the action of glycosyltransferases, which add sugar chains to various complex carbohydrates such as glycoproteins, glycolipids and proteoglycans. Functional glycomics, which uses sugar remodeling by glycosyltransferases, is a promising tool for the characterization of glycan functions. Here, we will focus on the positive and negative regulation of biological functions of integrins by the remodeling of N-glycans with N-acetylglucosaminyltransferase III (GnT-III) and N-acetylglucosaminyltransferase V (GnT-V), which catalyze branched N-glycan formations, bisecting GlcNAc and β1,6 GlcNAc, respectively. Typically, integrins are modified by GnT-III, which inhibits cell migration and cancer metastasis. In contrast, integrins modified by GnT-V promote cell migration and cancer invasion.  相似文献   

12.
It was shown previously that a majority of hybrids produced by in vitro fusion of normal macrophages with Cloudman S91 melanoma cells displayed enhanced metastatic potential in vivo, increased motility in vitro, increased ability to produce melanin, and responsiveness to melanocyte stimulating hormone compared with the parental Cloudman S91 melanoma cells. These hybrids also showed altered N-glycosylation consistent with a slower migration pattern of lysosome-associated membrane protein (LAMP-1) on electrophoretic gels. Because LAMP-1 is the major carrier of polylactosamine sugar structures, and synthesis of this complex sugar moiety indicates the extent of beta1,6 branch formation by beta1,6-N-acetyl-glucosaminyltransferase V (GnT-V), we analyzed the expression of GnT-V and beta1,6 branching in highly metastatic macrophage-fusion hybrids and compared with poorly metastatic ones. GnT-V was up-regulated in regard to both mRNA levels and enzymatic activity specifically in metastatic hybrids as well as parental macrophages compared with weakly metastatic hybrids and parental melanoma cells. Macrophages and metastatic hybrids also showed increased binding of the lectin L-phytohemagglutinin, which specifically binds to the beta1,6-branched sugar moiety. In addition, in metastatic hybrids there was increased cell surface expression of LAMP-1 and beta1 integrin, two prominent substrates for GnT-V also known to be associated with metastasis. Finally, exposure of metastatic hybrids in vitro to L-phytohemagglutinin or LAMP-1 completely eliminated melanocyte stimulating hormone/ isobutylmethyl xanthine-induced motility, suggesting a role for GnT-V in the motility of these cells. In summary, macrophage fusion with melanoma cells often increased metastatic potential, which was associated with enhanced expression of GnT-V and beta1,6-branching in glycoproteins. It is suggested that the known correlation with elevated GnT-V in both human and animal metastasis could, at least in some cases, reflect previous fusion of tumor cells with tumor-infiltrating macrophages, which, similar to malignant cells, show elevated expression of GnT-V and beta1,6-branched polylactosamines.  相似文献   

13.
14.
The effects of altering N-cadherin N-glycosylation on several cadherin-mediated cellular behaviors were investigated using small interfering RNA and site-directed mutagenesis. In HT1080 fibrosarcoma cells, small interfering RNA-directed knockdown of N-acetylglucosaminyltransferase V (GnT-V), a glycosyltransferase up-regulated by oncogene signaling, caused decreased expression of N-linked β(1,6)-branched glycans expressed on N-cadherin, resulting in enhanced N-cadherin-mediated cell-cell adhesion, but had no effect on N-cadherin expression on the cell surface. This effect on adhesion was accompanied by decreased cell migration and invasion, opposite of the effects observed when GnT-V was overexpressed in these cells (Guo, H. B., Lee, I., Kamar, M., and Pierce, M. (2003) J. Biol. Chem. 278, 52412–52424). A detailed study using site-directed mutagenesis demonstrated that three of the eight putative N-glycosylation sites in the N-cadherin sequence showed N-glycan expression. Moreover, all three of these sites, located in the extracellular domains EC2 and EC3, were shown by leucoagglutinating phytohemagglutinin binding to express at least some β(1,6)-branched glycans, products of GnT-V activity. Deletion of these sites had no effect on cadherin levels on the cell surface but led to increased stabilization of cell-cell contacts, cell-cell adhesion- mediated intracellular signaling, and reduced cell migration. We show for the first time that these deletions had little effect on formation of the N-cadherin-catenin complex but instead resulted in increased N-cadherin cis-dimerization. Branched N-glycan expression at three sites in the EC2 and -3 domains regulates N-cadherin-mediated cell-cell contact formation, outside-in signaling, and cell migration and is probably a significant contributor to the increase in the migratory/invasive phenotype of cancer cells that results when GnT-V activity is up-regulated by oncogene signaling.  相似文献   

15.
Laminin-332 (Lm332) is a large heterotrimeric glycoprotein that has been identified as a scattering factor, a regulator of cancer invasion as well as a prominent basement membrane component of the skin. Past studies have identified the functional domains of Lm332 and revealed the relationships between its activities and the processing of its subunits. However, there is little information available concerning the effects of N-glycosylation on Lm332 activities. In some cancer cells, an increase of beta1,6-GlcNAc catalyzed by N-acetylglucosaminyltransferase V (GnT-V) is related to the promotion of cancer cell motility. By contrast, bisecting GlcNAc catalyzed by N-acetylglucosaminyltransferase III (GnT-III) suppresses the further processing with branching enzymes, such as GnT-V, and the elongation of N-glycans. To examine the effects of those N-glycosylations to Lm332 on its activities, we purified Lm332s from the conditioned media of GnT-III- and GnT-V-overexpressing MKN45 cells. Lectin blotting and mass spectrometry analyses revealed that N-glycans containing the bisecting GlcNAc and beta1,6-GlcNAc structures were strongly expressed on Lm332 purified from GnT-III-overexpressing (GnT-III-Lm332) and GnT-V-overexpressing (GnT-V-Lm332) cells, respectively. Interestingly, the cell adhesion activity of GnT-III-Lm332 was apparently decreased compared with those of control Lm332 and GnT-V-Lm332. In addition, the introduction of bisecting GlcNAc to Lm332 resulted in a decrease in its cell scattering and migration activities. The weakened activities were most likely derived from the impaired alpha3beta1 integrin clustering and resultant focal adhesion formation. Taken together, our results clearly demonstrate for the first time that N-glycosylation may regulate the biological function of Lm332. This finding could introduce a new therapeutic strategy for cancer.  相似文献   

16.
Human beta1,6-N-acetylglucosaminyltransferase V (GnT-V) was expressed by baculovirus-insect cell system, and the purified recombinant enzyme was kinetically characterized. The data obtained were used to establish the kinetic basis of the substrate specificity toward donor nucleotide sugars, and also revealed that K(m) values for the donors are much higher compared to those of other GlcNAc transferases, the kinetic properties of which have been reported. Because this exceptionally higher K(m) suggests that GnT-V is physiologically present at far from saturated conditions, it would appear that the production of beta1,6-branched oligosaccharide, which is formed by GnT-V, could be regulated in vivo by the concentration of the donor, UDP-GlcNAc, as well as the expression levels of the enzyme. When B16 melanoma cells, which express high levels of GnT-V, were incubated with GlcNAc, the beta1,6-branched oligosaccharide levels were increased, as judged by a lectin blot analysis, in conjunction with an increase in intracellular UDP-GlcNAc. These findings suggest that the level of UDP-GlcNAc can be a critical factor in the production of beta1,6-branched oligosaccharides, for example, by tumor cells, which have been thought to be closely associated with tumor progression and metastasis.  相似文献   

17.
N-glycosylation has been revealed to be tightly associated with cancer metastasis. As a key transferase that catalyzes the formation of β1,4 N-acetylglucosamine (β1,4GlcNAc) branches on the mannose core of N-glycans, N-acetylglucosaminyltransferase IVa (GnT-IVa) has been reported to be involved in hepatocellular carcinoma (HCC) metastasis by forming N-glycans; however, the underlying mechanisms are largely unknown.In the current study, we found that GnT-IVa was upregulated in HCC tissues and positively correlated with worse outcomes in HCC patients. We found that GnT-IVa could promote tumor growth in mice; notably, this effect was attenuated after mutating the enzymatic site (D445A) of GnT-IVa, suggesting that GnT-IVa regulated HCC progression by forming β1,4GlcNAc branches. To mechanistically investigate the role of GnT-IVa in HCC, we conducted GSEA and GO functional analysis as well as in vitro experiments. The results showed that GnT-IVa could enhance HCC cell migration, invasion and adhesion ability and increase β1,4GlcNAc branch glycans on integrin β1 (ITGB1), a tumor-associated glycoprotein that is closely involved in cell motility by interacting with vimentin. Interruption of β1,4GlcNAc branch glycan modification on ITGB1 could suppress the interaction of ITGB1 with vimentin and inhibit cell motility. These results revealed that GnT-IVa could promote HCC cell motility by affecting the biological functions of ITGB1 through N-glycosylation.In summary, our results revealed that GnT-IVa is highly expressed in HCC and can form β1,4GlcNAc branches on ITGB1, which are essential for interactions with vimentin to promote HCC cell motility. These findings not only proposed a novel mechanism for GnT-IVa in HCC progression but also revealed the significance of N-glycosylation on ITGB1 during the process, which may provide a novel target for future HCC therapy.  相似文献   

18.
19.
Anaplastic lymphoma kinase is essential in early development, differentiation, and maintenance of cell survival; nevertheless, the mechanism to activate ALK has remained elusive. ALK has remained an “Orphan Receptor.” The studies cited below describe a unique mechanism termed “Ligand Independent Activation.” It is shown that activation of ALK results when the cytokine pleiotrophin (PTN) interacts with its receptor, the receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ). Pleiotrophin inactivates the catalytic activity of RPTPβ/ζ, which, when not inactivated, dephosphorylates phosphotyrosine sites in the activation domain of ALK; as a consequence of the inactivation of RPTPβ/ζ by PTN, autophosphorylation and autoactivation of ALK rapidly follow. The PTN/RPTPβ/ζ signaling pathway thus regulates the catalytic activity of ALK and tyrosine phosphorylation levels of ALK downstream target proteins. Furthermore, since ALK is only one of the key ALK phosphoproteins targeted by the PTN/RPTPβ/ζ signaling pathway, the PTN/RPTPβ/ζ signaling pathway has the potential to coordinately regulate tyrosine phosphorylation of other different key proteins in multiple cellular compartments. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

20.
HL-60, a human promyelocytic leukemia cell line, can be differentiated to myeloid lineage by all- trans retinoic acid (ATRA), dimethylsulfoxide (DMSO) and n -butyric acid (n -BA), or to monocytoid(monocytic/macrophagic) lineage by phorbol-12-myristate-13-acetate (PMA) and ganglioside GM(3). The activity alterations of N -acetylglucosaminyltransferase III and V (GnT-III, GnT-V) as well as alpha-1,6-fucosyl-tranferase (alpha1,6 Fuc T) were studied during the differentiation of HL-60 cells by the above-mentioned five inducers using the fluorescence (PA)-labeled glycan-HPLC method for GnT assays and biotin-labeled glycan-LCA affinity chromatography combined with the HRP-avidin colorimetric method for alpha1,6 Fuc T assay. It was observed that after 3 days, all three enzymes decreased in HL-60 cells induced by 1 micromol/l ATRA and 0.6 mmol/l n-BA, while GnT-III and alpha1,6 Fuc T increased, but GnT-V still decreased after induction by 1% DMSO. GnT-V and alpha1,6 Fuc T declined, while GnT-III was elevated after induction by 0.1 micromol/l PMA for 3 days. In contrast, GnT-III increased after the treatment with 50 micromol/l GM(3)for 3 or 6 days, but GnT-V was not appreciably changed and alpha1,6 FucT was elevated after 6 days of GM(3)treatment. It may be concluded that the decrease of GnT-V is the common change in myeloid differentiation and the increase of GnT-III is the general alteration in monocytoid differentiation. The changes in the activities of glycosyltransferases were consistent with the structural changes in surface N -glycans previously found in our laboratory, i.e. that the antennary number of N -glycans decreased during myeloid differentiation by ATRA, and the amount of bisecting GlcNAc in N -glycans increased during monocytoid differentiation by PMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号