首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxynitrite, generated for example in inflammatory processes, is capable of nitrating and oxidizing biomolecules, implying a considerable impact on the integrity of cellular structures. Cells respond to stressful conditions by the activation of signaling pathways, including receptor tyrosine kinase-dependent pathways such as mitogen-activated protein kinases and the phosphoinositide-3-kinase/Akt pathway. Peroxynitrite affects signaling pathways by nitration as well as by oxidation: while nitration of tyrosine residues by peroxynitrite modulates signaling processes relying on tyrosine phosphorylation and dephosphorylation, oxidation of phosphotyrosine phosphatases may lead to an alteration in the tyrosine phosphorylation/dephosphorylation balance. The flavanol (-)-epicatechin is a potent inhibitor of tyrosine nitration and may be employed as a tool to distinguish signaling effects due to tyrosine nitration from those that are due to oxidation reactions.  相似文献   

2.
Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated STAM2 specifically suppressed Akt activation, and a phosphorylation-deficient STAM2 mutant displayed prolonged localization on endosomes following EGF stimulation. These results reveal a novel link between the dephosphorylation and endocytic machinery and suggest that PTP1B can affect RTK signaling in a previously unrecognized manner.  相似文献   

3.
The protective effects of eating fruits and vegetables in the prevention of several degenerative pathologies have been attributed at least in part to the antioxidant and anti-inflammatory properties of polyphenols. In this study, we investigated the effects of two polyphenols, quercetin and resveratrol, on red blood cell Band 3 tyrosine phosphorylation signalling activated by peroxynitrite. Peroxynitrite is a physiological oxidant scavenged largely by the erythrocyte and formed by the reaction between nitrogen monoxide and superoxide anion. Quercetin and its structurally analogous (+)-catechin inhibited the peroxynitrite-dependent upregulation of Band 3 tyrosine phosphorylation. Quercetin was found to downregulate the activity of syk, which is upstream in the Band 3 tyrosine phosphorylation cascade, and partially prevented peroxynitrite-mediated phosphotyrosine phosphatase inhibition. Resveratrol and hydroxytyrosol, unexpectedly, amplified peroxynitrite-dependent upregulation of Band 3 tyrosine phosphorylation through the activation of lyn, a kinase of the src family. The present results clearly indicate that polyphenols may activate cell transduction pathways in different and sometimes opposite ways.  相似文献   

4.
Rho GTPases are signal transduction effectors that control cell motility, cell attachment, and cell shape by the control of actin polymerization and tyrosine phosphorylation. To identify cellular targets regulated by Rho GTPases, we screened global protein responses to Rac1, Cdc42, and RhoA activation by two-dimensional gel electrophoresis and mass spectrometry. A total of 22 targets were identified of which 19 had never been previously linked to Rho GTPase pathways, providing novel insight into pathway function. One novel target of RhoA was protein-tyrosine phosphatase 1B (PTP1B), which catalyzes dephosphorylation of key signaling molecules in response to activation of diverse pathways. Subsequent analysis demonstrated that RhoA enhances post-translational modification of PTP1B, inactivates phosphotyrosine phosphatase activity, and up-regulates tyrosine phosphorylation of p130Cas, a key mediator of focal adhesion turnover and cell migration. Thus, protein profiling reveals a novel role for PTP1B as a mediator of RhoA-dependent phosphorylation of p130Cas.  相似文献   

5.
Normal glucose regulation is achieved by having adequate insulin secretion and effective glucose uptake/disposal. Excess lipids in peripheral tissues — skeletal muscle, liver and adipose tissue — may attenuate insulin signaling through the protein kinase B (AKt) pathway and up-regulate protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. We studied accumulation of lipid metabolites [triglycerides (TAGs), diglycerides (DAGs)] and ceramides in relation to insulin signaling and expression and phosphorylation of PTP1B by preincubating rat skeletal muscle cells (L6 myotubes) with three saturated and three unsaturated free fatty acids (FFAs) (200 μM). Cells were also evaluated in the presence of wortmannin, an inhibitor of phosphatidylinositol 3-kinases and thus AKt (0–100 nM). Unsaturated FFAs increased DAGs, TAGs and PTP1B expression significantly, but cells remained insulin sensitive as assessed by robust AKt and PTP1B phosphorylation at serine (Ser) 50, Ser 398 and tyrosine 152. Saturated palmitic and stearic acids increased ceramides, up-regulated PTP1B, and had AKt and PTP1B phosphorylation at Ser 50 impaired. We show a significant correlation between phosphorylation levels of AKt and of PTP1B at Ser 50 (R2=0.84, P<.05). The same was observed with increasing wortmannin dose (R2=0.73, P<.05). Only FFAs that increased ceramides caused impairment of AKt and PTP1B phosphorylation at Ser 50. PTP1B overexpression in the presence of excess lipids may not directly cause insulin resistance unless it is accompanied by decreased PTP1B phosphorylation. A clear relationship between PTP1B phosphorylation levels at Ser 50 and its negative effect on insulin signaling is shown.  相似文献   

6.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

7.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

8.
Because of their antagonistic catalytic functions, protein-tyrosine phosphatases (PTPs) and protein-tyrosine kinases act together to control phosphotyrosine-mediated signaling processes in mammalian cells. However, unlike for protein-tyrosine kinases, little is known about the cellular substrate specificity of many PTPs because of the lack of appropriate methods for the systematic and detailed analysis of cellular PTP function. Even for the most intensely studied, prototypic family member PTP1B many of its physiological functions cannot be explained by its known substrates. To gain better insights into cellular PTP1B function, we used quantitative MS to monitor alterations in the global tyrosine phosphorylation of PTP1B-deficient mouse embryonic fibroblasts in comparison with their wild-type counterparts. In total, we quantified 124 proteins containing 301 phosphotyrosine sites under basal, epidermal growth factor-, or platelet-derived growth factor-stimulated conditions. A subset of 18 proteins was found to harbor hyperphosphorylated phosphotyrosine sites in knock-out cells and was functionally linked to PTP1B. Among these proteins, regulators of cell motility and adhesion are overrepresented, such as cortactin, lipoma-preferred partner, ZO-1, or p120ctn. In addition, regulators of proliferation like p62DOK or p120RasGAP also showed increased cellular tyrosine phosphorylation. Physical interactions of these proteins with PTP1B were further demonstrated by using phosphatase-inactive substrate-trapping mutants in a parallel MS-based analysis. Our results correlate well with the described phenotype of PTP1B-deficient fibroblasts that is characterized by an increase in motility and reduced cell proliferation. The presented study provides a broad overview about phosphotyrosine signaling processes in mouse fibroblasts and, supported by the identification of various new potential substrate proteins, indicates a central role of PTP1B within cellular signaling networks. Importantly the MS-based strategies described here are entirely generic and can be used to address the poorly understood aspects of cellular PTP function.  相似文献   

9.
Protein-tyrosine phosphatase (PTP) 1B has been implicated in negative regulation of insulin action, although little is known of the ability of insulin to regulate PTP1B itself. The ability of insulin to regulate phosphorylation and activation of PTP1B was probed in vivo. Challenge with insulin in vivo provoked a transient, sharp increase in the phosphotyrosine content of PTP1B in fat and skeletal muscle that peaked within 15 min. Insulin stimulated a decline of 60--70% in PTP1B activity. In mouse adipocytes, the inhibition of PTP1B activity and increased tyrosine phosphorylation of the enzyme were blocked by the insulin receptor tyrosine kinase inhibitor AG1024. Phosphoserine content of PTP1B declined in response to insulin stimulation. Elevation of intracellular cyclic AMP provokes a sharp increase in PTP1B activity and leads to increased phosphorylation of serine residues and decreased tyrosine phosphorylation. Suppression of cyclic AMP levels or inhibition of protein kinase A leads to a sharp decline in PTP1B activity, a decrease in phosphoserine content, and an increase in PTP1B phosphotyrosine content. PTP1B appears to be a critical point for insulin and catecholamine counter-regulation.  相似文献   

10.
Zhang W  Hong D  Zhou Y  Zhang Y  Shen Q  Li JY  Hu LH  Li J 《Biochimica et biophysica acta》2006,1760(10):1505-1512
Protein tyrosine phosphatase 1B (PTP1B) is a key element in the negative regulation of the insulin signaling pathway and may play an important role in diabetes and obesity. We identified ursolic acid, a natural pentacyclic triterpenoid that occurs widely in traditional Chinese medicinal herbs, as an inhibitor of PTP1B by screening an extract library of the traditional Chinese medicinal herbs used a diabetes clinic. By modifying urosolic acid, we designed and synthesized a derivative with a K(i) of 283 nM. As competitive inhibitors of PTP1B, ursolic acid and its derivative also inhibit T-cell protein tyrosine phosphatase and src homology phosphatase-2 but not leucocyte antigen-related phosphatase or protein tyrosine phosphatase alpha and epsilon, which are all possibly involved in the insulin pathway. The ursolic acid derivative enhanced insulin receptor phosphorylation in CHO/hIR cells and stimulate glucose uptake in L6 myotubes.  相似文献   

11.
12.
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.  相似文献   

13.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin and tyrosine kinase growth factor signaling. We have recently demonstrated that PTP1B deficiency increases GLUT2/insulin receptor (IR) A complexes and glucose uptake in suckling, but not adult, primary hepatocytes. Herein we have investigated intrahepatic glucose utilization in 3–5 days old wild‐type and PTP1B?/? mice. PTP1B deficiency decreased glycogen, lactate, and pyruvate content in the livers from suckling mice. Conversely, the activity of glucose 6‐phosphate dehydrogenase (G6PD), the rate limiting enzyme of the pentose phosphate cycle (PPC) which provides substrates for DNA synthesis, was enhanced in the liver of PTP1B?/? animals. Liver weight, liver‐to‐body mass ratio, DNA content, and PCNA expression were increased in PTP1B?/? suckling mice compared to the wild‐type controls. At the molecular level, STAT 5B phosphorylation, IGF‐I mRNA, and protein levels as well as IGF‐IR tyrosine phosphorylation were increased in the livers of PTP1B‐deficient neonates. Unexpectedly, hepatic and serum triglycerides (TG) were increased by PTP1B deficiency, although the expression of lipogenic enzymes remained as in the wild‐type controls. However, the analysis of milk composition revealed higher TG content in lactating females lacking PTP1B. The effects of PTP1B deficiency on G6PD activity, STAT 5B/IGF‐I/IGF‐IR axis, PCNA expression and liver growth during suckling were maintained by transferring PTP1B?/? embryos (PTP1B?/?T) to a wild‐type female. Conversely, PTP1B?/?T mice did not show hepatic fat accumulation. In conclusion, the present study suggests that PTP1B plays a unique role in the control of the physiological liver development after birth. J. Cell. Physiol. 225: 214–222, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Corticotropin signal transduction pathway involves serine/threonine protein phosphorylation. Recent reports suggest that protein tyrosine dephosphorylation may also be an integral component of that pathway. The present study was performed to investigate the role played by protein tyrosine phosphatases (PTPs) on acute response to corticotropin and the hypothetical regulation of PTPs by this hormone. We have used two powerful cell permeant PTP inhibitors, phenylarsine oxide (PAO) and pervanadate (PV), in order to examine the relevance of PTP activity on hormone-stimulated and 8-bromo-adenosine 3',5'-phosphate (8Br-cAMP is a permeant analogue of adenosine 3',5'-phosphate)-stimulated steroidogenesis in adrenal zona fasciculata (ZF) cells. In both cases, PAO and PV inhibited the steroid production in a dose-dependent fashion, and had no effect on steroidogenesis supported by a permeant analogue of cholesterol. The effect of hormonal stimulation on PTP activity was analyzed in rat adrenal ZF. In vivo corticotropin treatment reduced phosphotyrosine content in endogenous proteins and produced a transient increase of PTP activity in the cytosolic fraction, reaching a maximum (twofold) after 15 min. Incubation of adrenal ZF with 8Br-cAMP also produced PTP activation, suggesting that it can be mediated by cAMP-dependent protein kinase (PKA)-dependent phosphorylation. Detection of PTP activity in an in-gel assay showed three corticotropin-stimulated soluble PTPs with molecular masses of 115, 80 and 50 kDa. In summary, we report for the first time a hormone-dependent PTP activation in a steroidogenic tissue and provide evidence that PTP activity plays an important role in corticotropin signal pathway, acting downstream of PKA activation and upstream of cholesterol transport across the mitochondrial membrane.  相似文献   

15.
BACKGROUND/ AIMS: Since the reversible phosphorylation of tyrosyl residues is a critical event in cellular signaling pathways activated by erythropoietin (Epo), attention has been focused on protein tyrosine phosphatases (PTPs) and their coordinated action with protein tyrosine kinases. The prototypic member of the PTP family is PTP1B, a widely expressed non-receptor PTP located both in cytosol and intracellular membranes via its hydrophobic C-terminal targeting sequence. PTP1B has been implicated in the regulation of signaling pathways involving tyrosine phosphorylation induced by growth factors, cytokines, and hormones, such as the downregulation of erythropoietin and insulin receptors. However, little is known about which factor modulates the activity of this enzyme. METHODS: The effect of Epo on PTP1B expression was studied in the UT-7 Epo-dependent cell line. PTP1B expression was analyzed under different conditions by Real-Time PCR and Western blot, while PTP1B phosphatase activity was determined by a p-nitrophenylphosphate hydrolysis assay. RESULTS: Epo rapidly induced an increased expression of PTP1B which was associated with higher PTP1B tyrosine phosphorylation and phosphatase activity. The action of Epo on PTP1B induction involved Janus Kinase 2 (JAK2) and Phosphatidylinositol-3 kinase (PI3K). CONCLUSION: The results allow us to suggest for the first time that, besides modulating Epo/Epo receptor signaling, PTP1B undergoes feedback regulation by Epo.  相似文献   

16.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   

17.
Modulation of protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA /GSK-3α in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 μM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA /GSK-3α was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA /GSK-3α immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA /GSK-3α can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA /GSK-3α. J. Cell. Physiol. 171:95–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   

19.
Activation of the high affinity neurotrophin receptor tropomyosin-related kinase A (TrkA) by nerve growth factor (NGF) leads to phosphorylation of intracellular tyrosine residues of the receptor with subsequent activation of signaling pathways involved in neuronal survival such as the phosphoinositide-3-kinase (PI3-K)/protein kinase B (PKB/Akt) pathway and the mitogen-activated protein kinase (MAPK) cascade. In the present study, we tested whether inhibition of protein-tyrosine phosphatases (PTP) by orthovanadate could enhance tyrosine phosphorylation of TrkA thereby stimulating NGF-like survival signaling in embryonic hippocampal neurons. We found that the PTP inhibitor orthovanadate (1 microM) enhanced TrkA phosphorylation and protected neurons against staurosporine (STS)-induced apoptosis in a time-and concentration-dependent manner. Inhibition of PTP enhanced TrkA phosphorylation also in the presence of NGF antibodies indicating that NGF binding to TrkA was not required for the effects of orthovanadate. Moreover, orthovanadate enhanced phosphorylation of Akt and the MAPK Erk1/2 suggesting that the signaling pathways involved in the protective effect were similar to those activated by NGF. Accordingly, inhibition of PI3-K by wortmannin and MAPK-kinase (MEK) inhibition by UO126 abolished the neuroprotective effects. In conclusion, the results indicate that orthovanadate mimics the effect of NGF on survival signaling pathways in hippocampal neurons. Thus, PTP inhibition appears to be an appropriate strategy to trigger neuroprotective signaling pathways downstream of neurotrophin receptors.  相似文献   

20.
Protein tyrosine phosphatase 1B (PTP1B) is implicated in a number of signaling pathways including those mediated by insulin, epidermal growth factor (EGF), and the Src family kinases. The scaffolding protein caveolin-1 is also a participant in these pathways and is specifically phosphorylated on tyrosine 14, when these pathways are activated. Here, we provide evidence that PTP1B can efficiently catalyze the removal of the phosphoryl group from phosphocaveolin-1. Overexpression of PTP1B decreases tyrosine 14 phosphorylation in caveolin-1, while expression of the substrate-trapping mutant PTP1B/D181A causes the accumulation of phosphocaveolin-1 and prevents its dephosphorylation by endogenous PTPs. We further demonstrate that PTP1B physically associates with caveolin-1. Finally, we show that inhibition of PTP1B activity with a potent and specific small molecule PTP1B inhibitor blocks the PTP1B-catalyzed caveolin-1 dephosphorylation both in vitro and in vivo. Taken together, the results strongly suggest that caveolin-1 is a specific substrate for PTP1B. Identification of caveolin-1 as a PTP1B substrate represents an important new step in further understanding the signaling pathways regulated by PTP1B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号