首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of long treatment with dexamethasone 21-acetate and corticosterone on the glucocorticoid receptor in rat liver cytosol were compared. Dexamethasone acetate (5 micrograms/ml or 10 micrograms/ml water) or corticosterone (100 micrograms/ml water) was given to adrenalectomized animals as drinking solution for 6 days, and glucocorticoid receptor concentration was determined at 0, 12, 24, 48 and 72 h after steroid withdrawal. Dexamethasone acetate caused a dose dependent depletion of cytosol receptor. There was no measurable binding at time 0; the values of Bmax for the glucocorticoid receptor with decreased at 12, 24 and 48 h after the steroid withdrawal. Increased dissociation constant (Kd) were calculated for 12 and 24 h samples. The effect of corticosterone on receptor depletion was less pronounced. Bmax for the receptor was decreased at 0, 12, 24 h after steroid withdrawal with no change in Kd. The extent of steroids-induced receptor depletion showed good correlation with the induction of tyrosine aminotransferase (TAT), however, maximum TAT activity measured immediately after withdrawal of dexamethasone acetate was lower than that found after a single injection of dexamethasone acetate. We conclude that both steroids cause down regulation of the glucocorticoid receptor in rat liver cytosol, with both the extent and the duration of depletion being dependent on the biopotency of the glucocorticoid.  相似文献   

2.
Administration of (10 mg/200 g) methylamine or chloroquine to adrenalectomized rats for 2 days followed by a single injection of either cortisol (2.5 mg/200 g) or dexamethasone (0.5 mg/200 g) resulted in a significant enhancement of the tyrosine aminotransferase enzymatic activity in rat liver versus rats given a single injection only of either steroid. Lysosomotrophic reagents were unable to induce tyrosine aminotransferase when administered alone. Cytosols from rat liver treated with lysosomotrophic reagents in vivo had approx. 20-30% more specific binding to [3H]dexamethasone as compared to the control, untreated rats. This enhanced binding was due to an increase in the concentration of the receptor rather than a change in the affinity of the hormone for the receptor. Rat livers perfused with and homogenized in 10 mM Tris-HCI/0.25 M sucrose buffer (pH 7.5) containing about 5 mM lysosomotrophic reagents showed optimum stabilization of the steroid unbound glucocorticoid receptor in vitro at both 4 degrees C and 25 degrees C. These reagents had no effect on in vitro transformation of [3H]dexamethasone-receptor complex or on the binding of the thermally transformed receptor to the nuclei. It is concluded from these studies that lysosomotrophic reagents enhance tyrosine aminotransferase induction by glucocorticoids and stabilize unbound glucocorticoid receptor both in vivo and in vitro without any effect on in vitro transformation of the steroid-receptor complex.  相似文献   

3.
OBJECTIVE: The aims of the study were to evaluate whether growth hormone could be beneficial in a model of hypercatabolism induced by glucocorticoids and to examine its effects on ACTH, corticosterone and IGF-1 levels. The effects of growth hormone on the expression of both glucocorticoid receptor and tyrosine aminotransferase were also evaluated. METHODS: Fifty Wistar rats were divided into five groups and treated as follows: (A) daily subcutaneous injection of growth hormone (4.8 IU/kg/day) and oral placebo, (B) daily injection of placebo and oral dexamethasone (3 mg/kg/day), (C) daily injection of growth hormone and oral dexamethasone, (D) daily injection of placebo and oral placebo, and (E) no treatment. The animals were decapitated seven days after initiating treatment. RESULTS: Growth hormone did not modify the weight loss induced by dexamethasone. Glucocorticoid receptor expression was significantly lower in group A than in group E. An increase in tyrosine aminotransferase was observed in group C. CONCLUSION: Growth hormone did not exert any beneficial effect in this model of hypercatabolism. Growth hormone decreased glucocorticoid receptor expression. This fact could explain its beneficial effect when protein hypercatabolism is not the predominant phenomenon. Growth hormone induced the hyperexpression of tyrosine aminotransferase, thus suggesting an amplifying effect on the glucocorticoid action.  相似文献   

4.
皮质酮对大鼠再生肝细胞转录活性的影响   总被引:7,自引:0,他引:7  
以AgNOR颗粒数为指标,研究大鼠部分肝切除后,皮质酮对余留肝细胞转录活性的影响。结果显示:部分肝切除后0~24h,各组肝细胞内(假手术、去肾上腺、去肾上腺 皮质酮)AgNOR颗粒数均下降;部分肝切除后36h,假手术鼠的AgNOR数目最多,到48h时已基本恢复到肝切除前水平;在部分肝切除后24~48h,去肾上腺鼠的AgNOR颗粒数持续升高;给去肾上腺鼠再注射剂量分别为10、20、40mg/kg体重的皮质酮,发现在36h和48h时,皮质酮剂量越高,AgNOR颗粒数日越少,且下降幅度越大。部分肝切除前12h给大鼠注射糖皮质激素受体颉颃剂——RU486(10mg/kg体重),结果与去肾上腺鼠相似。以上结果表明:皮质酮对部分肝切除后肝细胞的转录活性具有明显的抑制作用,而且是通过受体起作用,该作用表现在部分肝切除24h之后。  相似文献   

5.
The muscle anabolic/anti-catabolic activity of the androgenic steroids testosterone and trenbolone was studied in rats to investigate whether such steroids act as agonists via muscle androgen receptors, or as antagonists that oppose the catabolic effects of endogenous glucocorticoids via their interaction with muscle glucocorticoid receptors. For comparison, the effects of the potent glucocorticoid antagonist RU486 were also examined. The parameters measured included growth rate, muscle weight, serum growth hormone and corticosterone levels, and receptor binding parameters in muscle cytosol. Females responded better than males to anabolic treatment with the androgenic steroids. Ovariectomy or adrenalectomy abolished this response. Neither the sex difference nor the requirement for ovaries or adrenals could be explained in terms of muscle receptor parameters or serum growth hormone levels. The muscle anabolic activity of androgenic steroids was restored when castrated males were treated with oestradiol and when adrenalectomized females were treated with corticosterone. RU486 also prevented the catabolic/anti-anabolic activity of exogenous corticosterone in adrenalectomized rats. Testosterone and RU486 behaved as anti-glucocorticoids in vivo since they inhibited glucocorticoid-induced liver tyrosine aminotransferase activity. The results suggest that anabolic steroids can act via muscle glucocorticoid receptors, thereby antagonizing the catabolic activity of endogenous glucocorticoids, rather than via muscle androgen receptors.  相似文献   

6.
Glucocorticoids are well-known mediators of stress-related endocrine, autonomic, and behavioral responses in mammals and human beings. However, our understanding of the mechanisms of glucocorticoid action in response to stress remains elusive. Therefore, in the present study, an effort has been made to systematically examine glucocorticoid action during acute (2 h) and repeated (2 h daily for 7, 15, and 30 days) immobilization stress in male Sprague-Dawley rats. Prolonged 30-day stress resulted in reduced total body weight gain. There was a dramatic 3- to 4-fold increase in plasma corticosterone levels after single acute stress paradigm, which remained augmented 2- to 3-fold higher than basal control levels during the repeated 30-day immobilization conditions. There was good relationship between increased plasma corticosterone levels and elevation of tyrosine aminotransferase activity in the liver during 30 days of stress. Because repeated immobilization stress animals showed increased levels of both plasma corticosterone and tyrosine aminotransferase activity, the regulation of cytosolic glucocorticoid receptor (GR) in rat liver, a major target tissue for glucocorticoid, was carried out during repeated stress by using GR binding assay, exchange assay, and Western blotting techniques. Exposure of animals to acute and repeated stress resulted in decreased free cytosolic GR. Interestingly, the bound cytosolic GR increased remarkably in liver during prolonged stress of 7-30 days. Overall, results obtained by using both binding assays and Western blotting for the first time showed that repeated stress animals had higher levels of total hepatic cytosolic GR as compared to control animals. These novel results suggest that repeated stress influences the hypothalamic-pituitary-adrenal axis in rats by elevating both the level of plasma corticosterone and total hepatic cytosolic GR.  相似文献   

7.
I L Rouse  P H Pearce  I T Oliver 《Life sciences》1975,17(10):1571-1578
The relationship between the glucocorticoid binding capacity of rat liver cytosol and the activity of tyrosine aminotransferase has been studied in adrenalectomized male rats. Bilateral adrenalectomy of male rats caused an increase within 3 days in the level of specific dexamethasone binding of liver cytosol accompanied by a rapid decrease in tyrosine aminotransferase activity. Known inducers of tyrosine aminotransferase were administered in vivo to test their effect on dexamethasone binding capacity, in order to determine whether the induction was by an indirect mechanism involving an increase in glucocorticoid binding capacity. Insulin, adrenalin, glucagon, dibutyryl cyclic AMP and oestradiol caused a significant increase in the activity of the enzyme, with no change in the specific dexamethasone binding. Tetracosactrin, a synthetic analogue of ACTH, had no effect on either parameter. It was concluded that the induction of tyrosine aminotransferase by the compounds tested was not mediated by an increase in glucocorticoid receptor activity.  相似文献   

8.
RU 38486: a potent antiglucocorticoid in vitro and in vivo   总被引:7,自引:0,他引:7  
The antiglucocorticoid activity of RU 38486, was studied both in vitro and in vivo. In vitro studies, RU 38486 was characterized by a high affinity (3 times higher than that of dexamethasone) for the cytosolic glucocorticoid receptor in rat hepatoma tissue culture (HTC) cells. This high affinity was due to a very low dissociation rate of the complexes formed with the receptor. In whole cells it was a potent full antagonist of dexamethasone-induced tyrosine aminotransferase (TAT) activity: the IC50 was 6-7 times lower than the concentration of the dexamethasone used. It was devoid of any glucocorticoid activity up to a concentration of 10 microM. In in vivo studies using adrenalectomized rats, RU 38486 totally inhibited dexamethasone-induced hepatic tryptophan oxygenase (TO) activity. It is also the first pure antagonist of dexamethasone-induced hepatic TAT. However, doses as high as 5 mg/kg of body weight were required for a 50% inhibition of the effect of dexamethasone at 0.01 mg/kg. RU 38486 did not display any glucocorticoid effect on these two responses up to 50 mg/kg.  相似文献   

9.
The effect of dexamethasone administered intraperitoneally on hepatic glucocorticoid receptor binding capacity was measured in adrenalectomized male Swiss Webster mice. The liver content of dexamethasone was also measured. Within 30 min of a 5 micrograms injection, the hepatic content of dexamethasone reached a maximum and fell quickly thereafter. By 6 h the hepatic content of dexamethasone had decreased to 25% of maximum and by 24 h the liver did not contain detectable dexamethasone. At this 24 h point, the glucocorticoid binding capacity was reduced to 50% of control. This decrease reflected down-regulation. Other studies revealed that only glucocorticoids caused this effect and doses of dexamethasone as low as 0.5-5 ng caused a clear down-regulation in binding capacity. Doses that cause receptor down-regulation are also effective at inducing tyrosine aminotransferase, suggesting that dexamethasone down-regulates its own receptors over a physiologically meaningful dosage range. It is concluded that dexamethasone causes a dose-dependent down-regulation of the glucocorticoid receptor in mouse liver.  相似文献   

10.
11.
The effect of exogenous corticosterone on the level of mouse hepatic glucocorticoid receptor was monitored to ascertain whether agonist-induced glucocorticoid receptor regulation takes place in living animals as it does in isolated cell systems. Adrenalectomized male Swiss-Webster mice were given 1 mg of corticosterone ip and 24 hr later the glucocorticoid receptor binding capacity of a high-speed cytosolic extract of liver was measured. It was shown that at this time point the administered steroid had been totally cleared and thus, the decrease in binding capacity was a reflection of downregulation. Receptor binding capacity was decreased by 25%. Downregulation was not permanent; 48-72 hr after the injection receptor content returned to baseline. Multiple daily injections of corticosterone were no more effective at causing downregulation than a single injection. It is concluded that glucocorticoid agonists downregulate their own receptors in the glucocorticoid target organs of intact animals as they do in cloned cell models.  相似文献   

12.
The amount of cytosolic glucocorticoid receptor in liver of Ts18, Ts16, and Ts19 vs euploid mouse fetuses was studied after incubation of [3H]dexamethasone with cytosol followed by isoelectric focusing on polyacrylamide gels. In addition, corticosterone concentrations and enzyme activities of alanine aminotransferase and tyrosine aminotransferase were measured in the cytosol of the livers. The amount of glucocorticoid receptor in the cytosol fractions of the livers was always higher in the Ts18 than in the euploid fetuses of the same litter. It was also significantly (P less than 0.0005) higher if pooled data from different litters were analyzed. The ratio of the glucocorticoid receptor in Ts18 vs euploid mice varied between 1.3 and 4.7, with a mean of 2.1. In contrast, the glucocorticoid receptor levels in Ts16 and Ts19 fetuses were not different from the corresponding euploid controls. Comparing the corticosterone levels of the three trisomies tested with the corresponding euploid fetuses, no significant differences were found, indicating that the markedly elevated cytosolic glucocorticoid receptor concentrations in Ts18 were not due to different corticosterone levels. This finding is consistent with the assignment of the glucocorticoid receptor gene to chromosome 18 in the mouse. There was no correlation between glucocorticoid receptor levels and the activity of the two glucocorticoid inducible enzymes tested in the liver of mouse fetuses.  相似文献   

13.
采用高效液相色谱和原位杂交技术研究了皮质酮对大鼠再生肝细胞鸟氨酸脱羧酶 (ODC)活性及ODCmRNA表达的影响。结果显示 ,大鼠完整肝脏中ODC水平较低 ,2 / 3肝切除 (PH)后 3h ,不同处理组ODC活性开始升高 ,6h达到最高值 ,其中 ,去肾上腺 NaCl组和糖皮质激素受体拮抗剂RU4 86处理组的酶活性高于对照组 (去肾上腺假手术组 ) ,而去肾上腺 皮质酮处理组的酶活性低于对照组 ,36h恢复到肝切除前水平 ;完整肝脏的ODCmRNA水平极低 ,PH后表达量迅速增加 ,5h达到最大值 ,不同处理组mRNA水平的高低顺序与酶活性一致 ,12h降至肝切除前水平 ;在PH前 12h给大鼠注射RU4 86 (10mg/kg体重 ) ,取得了与去肾上腺 NaCl处理鼠相似的结果。以上结果表明 ,在PH诱导的再生肝细胞中 ,ODCmRNA表达量的增加和 /或减少是造成ODC活性改变的原因之一 ,皮质酮对ODC活性及其mRNA的表达具有抑制作用 ,主要表现在肝再生的早期 ,该作用可能是通过受体实现的  相似文献   

14.
Stress-induced changes of glucocorticoid receptor in rat liver.   总被引:4,自引:0,他引:4  
The effect of corticosterone injection and of acute and repeated stress on rat liver cytosol glucocorticoid receptor was studied to ascertain whether corticosterone-induced glucocorticoid receptor (GR) regulation also takes place in intact animals as it does in adrenalectomized ones. Adult male rats were exposed to six different stressors (swimming, 10 mg/kg histamine i.p., 500 mU/kg vasopressin s.c., heat, immobilization and cold) acutely or three times daily for 18 days (repeated stress). Each of the stressors applied acutely provoked a pronounced increase of plasma corticosterone with subsequent induction of hepatic tyrosine aminotransferase activity. Depletion of cytosol receptor was however only noticed after swimming and histamine injection. On the other hand, sustained hypersecretion of corticosterone evoked by repeated stress significantly reduced the number of GR in rat liver cytosol without any change in Kd. It is concluded that in the presence of intact adrenal glands cytosol receptors are more resistant to corticosterone-induced depletion than in their absence. Further, repeated stress causes down-regulation of GR in the liver, most probably by sustained corticosterone secretion, yet the effect of other stress factors cannot be excluded.  相似文献   

15.
The purpose of the present study was to determine whether an increased plasma corticosterone or dexamethasone levels induced by a single corticosterone or dexamethasone injection to conscious rats affects the hypothalamic-pituitary-adrenocortical (HPA) activity induced by adrenergic and cholinergic agonists. Male Wistar rats were pretreated subcutaneously (s.c.) with a single dose of dexamethasone (5 mg/kg) or corticosterone (25 mg/kg) 24 or 48 h before intraperitoneal (i.p.) administration of adrenergic agonists: phenylephrine, an alpha1-adrenergic receptor agonist, clenbuterol, a beta2-adrenergic agonist and noradrenaline acting predominantly on alpha1-adrenoreceptors, and cholinergic agonists: carbachol, a predominant muscarinic receptor agonist and nicotine, a nicotinic receptor agonist. Dexamethasone profoundly decreased the resting ACTH levels in control rats and given 24 h before each of the stimulatory agonist abolished the adrenergic- and cholinergic agonists-induced ACTH and corticosterone responses. Pretreatment with corticosterone of control rats did not substantially alter the resting plasma ACTH and serum corticosterone levels measured 24 and 48 h later. A single pretreatment with corticosterone abolished or powerfully inhibited, perhaps by a feedback mechanism, the ACTH and corticosterone responses induced 24 and 48 h later by all adrenergic and cholinergic agonists used in this study. These results indicate that prolonged administration of corticosterone is not necessary to induce almost complete suppression of the HPA responsiveness to adrenergic or cholinergic stimulation. Chronic treatment with corticosteroids to achieve glucocorticoid receptors desensitization does not seem to be required.  相似文献   

16.
Abstract: Ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, was measured in the brain and the liver of adrenalectomized rats after an acute S.C. treatment with glucocorticoids. The effects of corticosterone and dexamethasone were compared in three brain areas, the cerebral cortex, hippocampus, and cerebellum. These structures have similar concentrations of cytosolic glucocorticoid receptor, as measured by an in vitro exchange assay using a specific glucocorticoid ligand, [3H]RU 26988, but contain different amounts of mineralocorticoid receptor. Corticosterone and dexamethasone increased ODC activity in the liver and brain areas in a dose dependent manner, dexamethasone being more active than corticosterone in all tissues. Moreover, estradiol, progesterone, and testosterone were inactive. Aldosterone, at high doses, increased brain ODC activity. Glucocorticoids, selected for their weak binding, or lack of binding to the mineralocorticoid receptor, were tested and found to be highly active in inducing brain and liver ODC, thus showing that ODC induction by steroids is specific for glucocorticoids. These results are among the first to suggest biochemically a central action of glucocorticoids following an acute treatment and confirm that the brain is a glucocorticoid target organ.  相似文献   

17.
Dynamic Aspects of Glucocorticoid Receptors in the Spinal Cord of the Rat   总被引:5,自引:2,他引:3  
In spite of biochemical and autoradiographic evidence for glucocorticoid binding sites in the spinal cord (SC), events occurring after the preliminary step of hormone binding were not studied. In this investigation, we have examined the transformation (activation) of the cytosolic receptor coupled to [3H]dexamethasone (DEX) and the in vivo interaction of adrenal hormone [corticosterone (CORT)] with purified nuclei from the SC, in addition to the CORT content of the SC before and after stress. Binding of [3H]DEX in the SC was 40% lower than in the hippocampus (HC), although the KD values were comparable. Transformation of [3H]DEX-receptor complexes in the cytosol was demonstrated by diethylaminoethane-cellulose chromatography, by DNA-cellulose binding, and by a combined minicolumn procedure including hydroxyapatite in addition to the last two techniques for separation of transformed, nontransformed, and meroreceptor complexes. In all these situations, SC glucocorticoid binding sites behaved similarly to those in the HC. Nuclear uptake of a tracer dose of [3H]CORT was much lower in the SC than in the HC; nuclear retention of CORT was more easily detected by radioimmunoassay after injection of 1 mg of CORT into adrenalectomized rats. Substantial amounts of CORT, which increased in level after stress, were measured in five regions in the SC, with higher concentrations in the cervical regions. These studies suggest that although SC and HC receptors show similar properties in vitro, differences emerged at the level of nuclear uptake in vivo, in that glucocorticoid action in the SC was similar to that in the optic nerve, where receptors seem to be localized mostly in glial cells.  相似文献   

18.
The effect of chronic adrenalectomy (10 days) and subsequent steroid hormone administration on exploratory activity in male rats was studied. Chronic adrenalectomy significantly decreased ambulatory and rearing activities, while grooming and defecation scores were not affected. Subcutaneous administration of corticosterone (30 μg/100 g body wt) 1 hr before the open-field test restored the decreased exploratory behavior of adrenalectomized rats toward the activity observed in sham-operated control animals. Neither dexamethasone or progesterone were effective. Administration of the synthetic glucocorticoid 1 hr prior to corticosterone substitution of the adrenalectomized rats even resulted in a complete prevention of the normalization of the behavioral response. The observed specific action of corticosterone on exploratory behavior corresponds to the stringent specificity of the neuronal hippocampal corticosterone receptor system.  相似文献   

19.
Glucocorticoids are known to play a role in the maturation of the exocrine pancreas. The exact mechanism of glucocorticoid action in pancreatic ontogeny is, however, not clear. The present study characterized and quantitated the binding of [3H]dexamethasone to cytosol fractions from pancreata of rats at various ages. Trunk blood samples from these rats were also checked for levels of free and bound corticosterone. Specific and saturable bindings for dexamethasone were found in pancreatic cytosol fractions from newborn suckling and adult rats. Competition studies showed a preference for steroids with glucocorticoid activity. Specific binding was relatively low in pancreatic cytosol from newly born and 1-day old pups. A significant rise was seen after day 15. Cytosolic binding capacities were greatest from pancreata obtained from pups at weaning (3rd to 5th weeks). Values then declined toward the adult level. Scatchard analysis revealed a single class of binding sites with a dissociation constant (Kd) of 7.3 (+/- 1.1) X 10(-8) M and number of binding sites equalled to 1.29 (+/- 0.18) X 10(-13) mole/mg of cytosolic protein in adult rat pancreas. Pancreata from 25- and 15-day old rats had Kds of 3.4 (+/- 0.8) X 10(-8) M and 2.7 (+/- 0.7) X 10(-8) M with the number of binding sites equal to 1.77 (+/- 0.21) X 10(-13) mole/mg protein and 1.31 (+/- 0.16) X 10(-13) mole/mg protein respectively. Total plasma corticosterone concentration was low before day 10. It rose significantly by day 15, peaked at day 25, and then declined after weaning. About 5-15% of corticosterone during weaning and about 20-30% before and after weaning were in the free form. The peak level of dexamethasone binding corresponded to an increase in the plasma corticosterone level during weaning. This suggests a close relationship between plasma corticosterone levels and pancreatic glucocorticoid receptors. Both may, therefore, play a role in pancreatic development in the rat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号