首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methacholine (3 microM) and sodium nitroprusside (300 microM) increased cGMP-dependent protein kinase activity ratios (activity without cGMP divided by activity with 2 microM cGMP) in canine tracheal smooth muscle from a control value of 0.47 to 0.55 and 0.71, respectively. This correlates with 3-fold and 6-fold increases in cGMP concentrations in response to methacholine and sodium nitroprusside, respectively. Addition of charcoal to the homogenizing buffer prior to homogenization had no significant effect on the cGMP-dependent protein kinase response to either agent, suggesting that activation of the enzyme was not occurring as a result of cGMP release during homogenization. In order to limit cGMP dissociation from cGMP-dependent protein kinase during the assay procedure, it was necessary to perform assays at a reduced temperature (0 degree C) and with an abbreviated incubation time (2.5 min). When assayed at 30 degrees C, activated cGMP-dependent protein kinase rapidly lost activity. This inactivation occurred whether the enzyme had been activated exogenously, by exposing a supernatant fraction of canine trachealis to 0.1 microM cGMP, or endogenously, by treating intact canine trachealis with methacholine or sodium nitroprusside. By assaying instead at 0 degree C, the inactivation of cGMP-dependent protein kinase was minimized. Therefore, the activity ratio obtained by this new modified assay provided an estimate of the endogenous activation state of cGMP-dependent protein kinase. The data indicate that cGMP responses in canine trachealis to both methacholine and sodium nitroprusside are functionally linked to activation of cGMP-dependent protein kinase and are consistent with the hypothesis that cGMP, via cGMP-dependent protein kinase activation, regulates smooth muscle contractility.  相似文献   

2.
The effects of acetylcholine and sodium nitroprusside on the activity of cGMP-dependent protein kinase were studied in the perfused rat heart. Acetylcholine produced a dose-dependent increase in cGMP levels and cGMP-dependent protein kinase activity, and reduced the force of contraction. Both acetylcholine and sodium nitroprusside produced rapid increases in cardiac cGMP, with nitroprusside being the more potent agent. Only acetylcholine, however, raised the activity ratio of the cGMP-dependent protein kinase and decreased the force of contraction. Whereas acetylcholine and nitroprusside were slightly additive in their effects on total cGMP levels, the increase in the activity ratio of the cGMP-dependent protein kinase and the decrease in the force of contraction produced by acetylcholine were unchanged by nitroprusside. The results suggest that the cGMP produced by acetylcholine, but not nitroprusside, was coupled to protein kinase activation in this tissue.  相似文献   

3.
The phosphorylation of the enzyme tyrosine hydroxylase by the cGMP pathway was investigated in chromaffin cells from the bovine adrenal medulla. The nitric oxide donor, sodium nitroprusside, and the natriuretic peptide, C-type natriuretic peptide, which are able to increase cGMP levels and cGMP-dependent protein kinase activity, produced significant increases in the phosphorylation level of tyrosine hydroxylase in a time- and concentration-dependent manner. The pretreatment of the cells with the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one blocked the effect of sodium nitroprusside. This result indicates that cGMP production by this enzyme mediated this effect. Experiments performed with a cGMP-dependent protein kinase inhibitor, the Rp-isomer of 8-(4-chlorophenylthio)-cyclic guanosine monophosphorothioate, which blocked the effects of both sodium nitroprusside and C-type natriuretic peptide, demonstrated that the phosphorylation increases evoked by both compounds were mediated by the activation of cGMP-dependent protein kinase. In cells incubated with the adenylyl cyclase activator, forskolin, an increase in the phosphorylation level of the tyrosine hydroxylase was also found. When cells were treated simultaneously with forskolin and sodium nitroprusside or C-type natriuretic peptide, an additive effect on tyrosine hydroxylase phosphorylation was not observed. This suggests that cAMP- and cGMP-dependent protein kinases may phosphorylate the same amino acid residues in the enzyme. Western blot analysis of soluble extracts from chromaffin cells detected specific immunoreactivity for two different commercial antibodies raised against cGMP-dependent protein kinase (both Ialpha and Ibeta isoforms). Electrophoretic mobility correlates with that of purified PKG Ialpha. Because the phosphorylation of the tyrosine hydroxylase correlates with increases in its enzymatic activity and thus with augmentation in the cell capacity to synthesize catecholamines, our results indicate that a cGMP-based second messenger pathway participates in catecholamine biosynthesis regulation in chromaffin cells, a mechanism which may be widespread in other catecholamine-synthesizing cells.  相似文献   

4.
Cyclic nucleotide-dependent protein kinases in airway smooth muscle   总被引:6,自引:0,他引:6  
Because of the potential importance of cyclic nucleotide-dependent protein kinases in the regulation of airway smooth muscle tone, we have examined some of the characteristics of these enzymes in the soluble fraction of canine trachealis homogenates. In the absence of added cAMP, the heat-stable cAMP-dependent protein kinase inhibitor (PKI) abolished only a half of the 32P incorporation into mixed histones. The remaining activity appeared to be contributed by a cyclic nucleotide-independent enzyme. Phosphotransferase activity was enhanced 5-fold by 5 microM cAMP but only 70% of the cAMP-stimulated activity could be inhibited by PKI. The sensitivity of the cyclic nucleotide-dependent, PKI-resistant enzyme to cAMP, cGMP, and Mg2+ indicated that it was cGMP-dependent protein kinase. Because of the large amount of cyclic nucleotide-independent activity, and the ability of cAMP to activate cGMP-dependent protein kinase, the traditional "-cAMP/+cAMP" ratio did not provide an accurate assessment of the in vivo activation state of cAMP-dependent protein kinase. However, a modified assay was developed which allowed the precise measurement of cAMP-dependent, cGMP-dependent, and cyclic nucleotide-independent protein kinase activities. Using this new method, the cAMP-dependent protein kinase activity ratio of 0.239 in untreated trachealis strips was increased to 0.355 and 0.386 by prior exposure of the intact tissue to the smooth muscle relaxants isoproterenol and prostaglandin E2, respectively. The results of this study are consistent with the proposed role of cAMP-dependent protein kinase in the regulation of smooth muscle contractile function.  相似文献   

5.
The activation of large conductance, calcium-sensitive K(+) (BK(Ca)) channels by the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway appears to be an important cellular mechanism contributing to the relaxation of smooth muscle. In HEK 293 cells transiently transfected with BK(Ca) channels, we observed that the NO donor sodium nitroprusside and the membrane-permeable analog of cGMP, dibutyryl cGMP, were both able to enhance BK(Ca) channel activity 4-5-fold in cell-attached membrane patches. This enhancement correlated with an endogenous cGMP-dependent protein kinase activity and the presence of the alpha isoform of type I cGMP-dependent protein kinase (cGKI). We observed that co-transfection of cells with BK(Ca) channels and a catalytically inactive ("dead") mutant of human cGKIalpha prevented enhancement of BK(Ca) channel in response to either sodium nitroprusside or dibutyryl cGMP in a dominant negative fashion. In contrast, expression of wild-type cGKIalpha supported enhancement of channel activity by these two agents. Importantly, both endogenous and expressed forms of cGKIalpha were found to associate with BK(Ca) channel protein, as demonstrated by a reciprocal co-immunoprecipitation strategy. In vitro, cGKIalpha was able to directly phosphorylate immunoprecipitated BK(Ca) channels, suggesting that cGKIalpha-dependent phosphorylation of BK(Ca) channels in situ may be responsible for the observed enhancement of channel activity. In summary, our data demonstrate that cGKIalpha alone is sufficient to promote the enhancement of BK(Ca) channels in situ after activation of the NO/cGMP signaling pathway.  相似文献   

6.
The role of protein kinase, in particular cyclic GMP-dependent protein kinase (PKG), in the control of chemotaxis was studied in Tetrahymena thermophila using the membrane-permeable cGMP analogue 8-bromo-cGMP and the NO-generator sodium nitroprusside (SNP) that stimulates cGMP production by activating guanylate cyclase. Stimulation of chemoattraction was observed in the presence of 8-bromo-cGMP and nitroprusside when used in 10–100 μM concentrations in vivo. In vitro stimulation of ciliary membrane PKG activity was observed when using similar concentrations of cGMP or 8-bromo-cGMP to those in the in vivo experiments. In contrast, the protein kinase flavonol inhibitors quercitin and kaempherol block chemoattraction and reduce ciliary membrane PGK activity in vitro. For the inhibition of PKG, the IC-50 s for quercitin and kaempherol are 22 and 19 μM, respectively. The results suggest a modulating function of PKG on adaptory processes in cilia-mediated chemotaxis.

The ciliary membrane-associated PKG was partially characterized. Without added external protein kinase substrate in vitro, an endogenous ciliary membrane kinase activity showed phosphorylation of 55 and 97 kDa Triton-X-100 soluble proteins when analyzed by SDS-PAGE under reducing conditions and with 32P-γ-ATP as phosphorylation donor. Phosphoamino acid analysis of PKG-phosphorylated proteins showed 32P-phosphate labeling of serine and threonine residues. Ciliary membrane-associated PKG was further purified by carboxy-methyl-sephadex-column chromatography. The membrane enzyme was Mg2++-dependent and had a pH optimum at 6.4. The carboxy-methyl-sephadex-eluted PKG was analyzed by electrophoresis on sodium dodecyl sulphate polyacrylamide gels showing a molecular weight of 70–75 kDa.  相似文献   


7.
The amino acids involved in substrate (cAMP) binding to human platelet cGMP-inhibited cAMP phosphodiesterase (PDE3A) are identified. Less is known about the inhibitor (cGMP) binding site. We have now synthesized a nonhydrolyzable reactive cGMP analog, Rp-guanosine-3′,5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate (Rp-cGMPS-BDB). Rp-cGMPS-BDB irreversibly inactivates PDE3A (KI = 43.4 ± 7.2 μM and kcart = 0.007 ± 0.0006 min−1). The effectiveness of protectants in decreasing the rate of inactivation by Rp-cGMPS-BDB is: Rp-cGMPS (Kd = 72 μM) > Sp-cGMPS (124), Sp-cAMPS (182) > GMP (1517), Rp-cAMPS (3762), AMP (4370 μM). NAD+, neither a substrate nor an inhibitor of PDE3A, does not protect. Nonhydrolyzable cGMP analogs exhibit greater affinity than the cAMP analogs. These results indicate that Rp-cGMPS-BDB targets favorably the cGMP binding site consistent with a docking model of PDE3A-Rp-cGMPS-BDB active site. We conclude that Rp-cGMPS-BDB is an effective active site-directed affinity label for PDE3A with potential for other cGMP-dependent enzymes.  相似文献   

8.
Phosphoinositide 3-kinase (PI3K) and Akt play important roles in platelet activation. However, the downstream mechanisms mediating their functions are unclear. We have recently shown that nitric-oxide (NO) synthase 3 and cGMP-dependent protein kinase stimulate platelet secretion and aggregation. Here we show that PI3K-mediated Akt activation plays an important role in agonist-stimulated platelet NO synthesis and cGMP elevation. Agonist-induced elevation of NO and cGMP was inhibited by Akt inhibitors and reduced in Akt-1 knock-out platelets. Akt-1 knock-out or Akt inhibitor-treated platelets showed reduced platelet secretion and aggregation in response to low concentrations of agonists, which can be reversed by low concentrations of 8-bromo-cGMP or sodium nitroprusside (an NO donor). Similarly, PI3K inhibitors diminished elevation of cGMP and inhibited platelet secretion and the second wave platelet aggregation, which was also partially reversed by 8-bromo-cGMP. These results indicate that the NO-cGMP pathway is an important downstream mechanism mediating PI3K and Akt signals leading to platelet secretion and aggregation. Conversely, the PI3K-Akt pathway is the major upstream mechanism responsible for activating the NO-cGMP pathway in platelets. Thus, this study delineates a novel platelet activation pathway involving sequential activation of PI3K, Akt, nitric-oxide synthase 3, sGC, and cGMP-dependent protein kinase.  相似文献   

9.
Store-operated Ca2+ entry (SOCE) is an important mechanism for Ca2+ influx in smooth muscle cells; however the activation and regulation of this influx pathway are incompletely understood. In the present study we have examined the effect of several protein kinases in regulating SOCE in pulmonary artery smooth muscle cells (PASMCs) of the rat. Inhibition of protein kinase C with chelerythrine (3 μM) potentiated SOCE by 47 ± 2%, while the tyrosine kinase inhibitors genistein (100 μM) and tyrphostin 23 (100 μM) caused a significant reduction in SOCE of 55 ± 9% and 43 ± 7%, respectively. It has been proposed that Ca2+-insensitive phospholipase A2 (iPLA2) is involved in the activation of SOCE in many different cell types. The iPLA2 inhibitor, bromoenol lactone had no effect on SOCE, suggesting that this mechanism was not involved in the activation of the pathway. The calmodulin antagonists, calmidazolium (CMZ) (10 μM) and W-7 (10 μM) appeared to potentiate SOCE in PASMCs. Further investigation established that CMZ was actually activating a Ca2+ influx pathway that was independent of the filling state of the sarcoplasmic reticulum. The CMZ-activated Ca2+ influx was blocked by Gd3+ (10 μM), but unaffected by 2-APB (75 μM), indicating a pharmacological profile distinct from the classical SOCE pathway.  相似文献   

10.
The effect of nitric oxide (NO) on Na+/H+ exchange (NHE) activity was investigated utilizing Caco-2 cells as an experimental model. Incubation of Caco-2 cells with 10(-3) M S-nitroso-N-acetylpenicillamine (SNAP), a conventional donor of NO, for 20 min resulted in a approximately 45% dose-dependent decrease in NHE activity, as determined by assay of ethylisopropylamiloride-sensitive 22Na uptake. A similar decrease in NHE activity was observed utilizing another NO-specific donor, sodium nitroprusside. SNAP-mediated inhibition of NHE activity was not secondary to a loss of cell viability. NHE3 activity was significantly reduced by SNAP (P < 0.05), whereas NHE2 activity was essentially unaltered. The effects of SNAP were mediated by the cGMP-dependent signal transduction pathway as follows: 1) LY-83583 and 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), specific inhibitors of soluble guanylate cyclase, blocked the inhibitory effect of SNAP on NHE; 2) 8-bromo-cGMP mimicked the effects of SNAP on NHE activity; 3) the SNAP-induced decrease in NHE activity was counteracted by a specific protein kinase G inhibitor, KT-5823 (1 microM); 4) chelerythrine chloride (2 microM) or calphostin C (200 nM), specific protein kinase C inhibitors, did not affect inhibition of NHE activity by SNAP; 5) there was no cross activation by the protein kinase A-dependent pathway, as the inhibitory effects of SNAP were not blocked by Rp-cAMPS (25 microM), a specific protein kinase A inhibitor. These data provide novel evidence that NO inhibits NHE3 activity via activation of soluble guanylate cyclase, resulting in an increase in intracellular cGMP levels and activation of protein kinase G.  相似文献   

11.
It is generally well accepted that nitrovasodilator-induced relaxation of vascular smooth muscle involves elevation of cGMP and activation of a specific cGMP-dependent protein kinase [protein kinase G (PKG)]. However, the protein targets of PKG and the underlying mechanisms by which this kinase leads to a relaxant response have not been elucidated. Several types of smooth muscle, including rat myometrium and vas deferens, are not relaxed by sodium nitroprusside, even at concentrations that produce marked elevation of cGMP and activation of PKG. The main objective of our studies was to compare PKG-mediated protein phosphorylation in intact rat aorta, rat myometrium, and rat vas deferens using two-dimensional gel electrophoresis. In intact rat aorta, seven PKG substrates were detected during relaxation of the tissue. None of the PKG substrates identified in the rat aorta appeared to be phosphorylated in the myometrium or vas deferens after administration of various cGMP-elevating agents. Thus the failure of the rat myometrium and rat vas deferens to relax in the face of cGMP elevation and PKG activation may be due to a lack of PKG substrate phosphorylation.  相似文献   

12.
Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3′,5′-cyclic monophosphate and 8-bromoguanosine-3′,5′-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Iβ expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by phosphorylating c-Raf kinase on Ser43 and thereby inhibiting its activation and (ii) by inducing MAP kinase phosphatase 1 expression.  相似文献   

13.
Calcium release in response to the activation of muscarinic M1 and histamine H1 receptors was studied in single N1E-115 cells using Fura-2 imaging. The objective was to relate changes in the kinetics of Ca release with reductions in functional receptor density resulting from receptor desensitization. Calcium release increased and its time course accelerated with increasing carbachol concentration with an EC50 = 96 ± 8 μM. This value is similar to the binding KD (100 μM) and the similarity shows that the activation of calcium release is limited by the number of muscarinic receptors. In contrast, the EC50 for Ca release in response to histamine is 4.0 ± 0.7 μM while the binding KD is 8.3 μM and, therefore, H1 receptors appear to be in approximately 2-fold excess over the minimum number necessary to fully engage the Ca release mechanism.Functional surface receptor number was assayed in the population of cells by counting the total number of cells responding to agonist. A 5 min exposure to 1 mM carbachol caused 12% of cells to lose their ability to respond to carbachol, with no change in their response to histamine. Interpolating from the dose-response curve taken before desensitization, this is equivalent to an average 23% reduction in the number of muscarinic receptors. In individual cells the latency to Ca release is dose-dependent in the absence of excess receptors. The loss of functional receptors was therefore estimated from the increase in latency after desensitization, and varied from 5–48% of receptors (22 ± 18%). Muscarinic desensitization did not depend on IP3-evoked Ca release, Ca entry, protein kinase C, NO, or cGMP. We conclude that in a population, the number of cells responding and in single cells, the latency to Ca release can serve as measures of functional receptor density.  相似文献   

14.
cGMP-dependent protein kinase from bovine lung has been purified to homogeneity using 8-(2-aminoethyl)-amino adenosine 3':5'-monophosphate/Sepharose. Conditions for adsorption of holoenzyme to the affinity chromatography media followed by competitive ligand elution with cGMP have been determined. The holoenzyme of 150,000 molecular weight is composed of two 74,000 molecular weight subunits which are linked in part by disulfide bridges. Two moles of cGMP are bound per mol of holoenzyme compatible with 1 mol of cGMP/monomer. Dissociation of subunits does not occur upon cGMP binding and protein kinase activation. cGMP-dependent protein kinase has an isoelectric point of 5.4 and a Stokes radius of 50 A. The enzyme is asymmetric with an f/f0 of 1.42 and an axial ratio of 7.4. Determination of enzyme activity at varying concentrations of ATP revealed that cGMP increased the Vmax for ATP without significant effect on the Km. The purified enzyme was maximally active at 5 mM Mg2+; other divalent cations could not substitute for Mg2+. In the presence of Mg2+, strong inhibitory effects of other cations were observed with Mn2+, greater than Zn2+, greater than Co2+ greater than Ca2+. Although maximal cGMP-dependence was observed at pH 5.7 to 7.0, basal activity rose at higher pH values to approach activity observed with cGMP. A molecular model comparing cGMP-dependent protein kinase with cAMP-dependnet protein kinase is presented.  相似文献   

15.
The role of 3',5'-cyclic guanosine monophosphate (cGMP) in the activation of mitogen-activated protein kinases (MAPKs) was investigated in rat pinealocytes. Treatment with dibutyryl cGMP (DBcGMP) dose-dependently increased the phosphorylation of both p44 and p42 isoforms of MAPK. This effect of DBcGMP was abolished by PD98059 (a MAPK kinase inhibitor), H7 (a nonspecific protein kinase inhibitor), and KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor]. Elevation of cellular cGMP content by treatment with norepinephrine, zaprinast (a cGMP phosphodiesterase inhibitor), or nitroprusside was effective in activating MAPK. Natriuretic peptides that were effective in elevating cGMP levels in this tissue were also effective in activating MAPK. Our results indicate that, in this neuroendocrine tissue, the cGMP/PKG signaling pathway is an important mechanism used by hormones and neurotransmitters in activating MAPK.  相似文献   

16.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

17.
Guanosine cyclic 3',5'-monophosphate (cGMP) dependent protein kinase is inactivated by o-phthalaldehyde. The loss of phosphotransferase activity following treatment with o-phthalaldehyde was rapid, and the second-order rate constant at 25 degrees C and pH 7.3 was 35 M-1 s-1. The inactivation reaction did not follow saturation kinetics. The cGMP-dependent protein kinase was protected from inactivation by its substrates, MgATP and Ser-peptide. Fluorescence excitation and emission spectroscopic data showed that an isoindole derivative was formed following the reaction between cGMP-dependent protein kinase and o-phthalaldehyde. Four moles of isoindole per mole of the cGMP-dependent protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. In the absence of cGMP, the protein kinase lost only 50% of its cGMP binding activity while there was almost a complete loss of its phosphotransferase activity. Studies in the presence of 20 microM cGMP, however, showed that about 2 mol of isoindole groups per mole of the protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. The second-order rate constant for inactivation of cGMP-dependent protein kinase by o-phthalaldehyde in the presence of 20 microM cGMP was 40 M-1 s-1. Fluorescence measurements of samples containing inactivated, iodoacetamide-modified, or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified, cGMP-dependent protein kinase and o-phthalaldehyde showed that the intensity of fluorescence in each case was about 50% of that obtained from unmodified, active cGMP-dependent protein kinase and o-phthalaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We studied regional variation in canine trachealis smooth muscle sensitivity and responsiveness to methacholine as well as basal and methacholine-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) and cAMP-dependent protein kinase activity. The trachea between the cricoid cartilage and the carina was divided into three segments of equal length (designated cervical, middle, and thoracic regions), each consisting of approximately 12-14 cartilage rings. Smooth muscle strips from each of the three regions were exposed to cumulative half-log increments of methacholine chloride. The sensitivity (-log EC50) and responsiveness (force per cross-sectional area and force per milligram protein) of the smooth muscle to methacholine in each region was determined from these data. Smooth muscle strips from cervical and thoracic regions were frozen before and after exposure to cumulative half-log increments of methacholine up to each region's previously determined EC50. Frozen samples were assayed for cAMP content or cAMP-dependent protein kinase activity. The relationship between resting tension and methacholine sensitivity and responsiveness were studied. For the size strips we used, 4 g resting tension set the average cervical and thoracic strips at 96 and 101% of their optimal length, respectively. The methacholine EC50 was not affected by a variation in resting tension. Sensitivity to methacholine was 7.1, 6.8, and 6.5 for cervical, middle, and thoracic regions, respectively. The responsiveness of the cervical and thoracic smooth muscle to methacholine was 16.4 and 16.3 g force/mm2, respectively, at an EC50 methacholine. Basal cAMP was lower in cervical smooth muscle than in thoracic. cAMP-dependent protein kinase activity ratios under both basal and EC50 methacholine-stimulated conditions were lower in cervical smooth muscle than in thoracic. We have observed in trachealis smooth muscle an inverse relationship between methacholine sensitivity and either cAMP or cAMP-dependent protein kinase activity. We suggest that cAMP and cAMP-dependent protein kinase play a role in the regulation of airway smooth muscle sensitivity to cholinergic agonists.  相似文献   

19.
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.  相似文献   

20.
Helically cut strips of successive IPA segments of rabbits, dogs and human patients were set up for isometric recording . High tone was produced by norepinephrine (NE, 3 μM). This tone was markedly reduced by prostacyclin (PGI2) in the secondary, tertiary and quaternary branches of human and canine pulmonary trunk. The IC50 values for PGI2 ranged from 22 to 503 nM, the human vessels being more sensitive to prostacyclin than canine IPA. Under these conditions, the primary and secondary branches of the rabbit pulmonary trunk were not relaxed by PGI2. The contractile potency of NE was determined in each pulmonary vessel studied. The secondary segments of rabbit IPA were about ten times as sensitive to NE (EC50 for NE: 38±7 nM) as compared to the secondary IPA from dogs and humans (EC50 values: 370±84 and 440±50, respectively). When high tone was induced by equieffective contractile concentrations of NE (3 μM for canine and human IPA and 0.3 μM for rabbit vessels), PGI2 was still less effective (P<0.01) in relaxing secondary IPA of rabbits (IC25: 220±55) than the corresponding segments of dogs and humans (IC25: 51±12 and 17±4, respectively). The difference between canine and human vessels was also significant (P<0.02). These results indicate that there is an interspecies difference in the sensitivity of IPA to NE and PGI2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号