首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To address the effects of single amino acid substitutions on the flexibility of Escherichia coli dihydrofolate reductase (DHFR), the partial specific volume (v(o)) and adiabatic compressibility (beta(s)(o)) were determined for a series of mutants with amino acid replacements at Gly67 (7 mutants), Gly121 (6 mutants), and Ala145 (5 mutants) located in three flexible loops, by means of precise sound velocity and density measurements at 15 degrees C. These mutations induced large changes in v(o) (0.710-0.733 cm(3). g(-1)) and beta(s)(o) (-1.8 x 10(-6)-5.5 x 10(-6) bar(-1)) from the corresponding values for the wild-type enzyme (v(o)=0.723 cm(3). g(-1), beta(s)(o) = 1.7 x 10(-6) bar(-1)), probably due to modifications of internal cavities. The beta(s)(o) value increased with increasing v(o), but showed a decreasing tendency with the volume of the amino acid introduced. There was no significant correlation between beta(s)(o) and the overall stability of the mutants determined from urea denaturation experiments. However, a mutant with a large beta(s)(o) value showed high enzyme activity mainly due to an enhanced catalytic reaction rate (k(cat)) and in part due to increased affinity for the substrate (K(m)), despite the fact that the mutation sites are far from the catalytic site. These results demonstrate that the flexibility of the DHFR molecule is dramatically influenced by a single amino acid substitution in one of these loops and that the flexible loops of this protein play important roles in determining the enzyme function.  相似文献   

2.
Site-specific in vitro mutagenesis was used to direct various amino acid substitutions at conserved positions within the sequence of human interferon-alpha 1 (IFN-alpha 1). The antiviral specific activity of IFN-alpha 1, expressed in M13 as a fusion protein [IFN-alpha 1 (phi WT)], could be altered by single amino acid substitutions. The substitution of glycine for tyrosine at position 123 results in a loss of more than 99% of the antiviral specific activity on human cells, but causes no significant change in the antiviral specific activity on primary bovine cells. The tyrosine at position 123 is thus implicated in determining human cell specificity. Based on analysis of IFN-alpha 2, IFN-alpha 1 contains two dulsulphide bridges between cysteine residues 29 and 139 and cysteine residues 1 and 99. IFN-alpha 1 also contains a fifth cysteine residue at position 86. IFN-alpha 1 (phi WT) carrying three serine for cysteine substitutions at positions 1, 86 and 99 retains 23% of the antiviral specific activity of IFN-alpha 1 (phi WT) on human cells. However, the antiviral activity on bovine cells is not significantly affected by this modification. The presence of the disulphide bridge between residues 1 and 99 thus appears to be required for full antiviral activity on human but not bovine cells. A single serine for cysteine substitution at position 29 reduces the antiviral specific activity on both human and bovine cells by some 95%. This data shows that the disulphide bridge between residues 29 and 139 is critical for the antiviral activity of IFN-alpha's.  相似文献   

3.
Lactate dehydrogenases are of considerable interest as stereospecific catalysts in the chemical preparation of enantiomerically pure alpha-hydroxyacid synthons. For such applications in synthetic organic chemistry it would be desirable to have enzymes which tolerate elevated temperatures for prolonged reaction times, to increase productivity and to extend their applicability to poor substrates. Here, two examples are reported of significant thermostabilizations, induced by site-directed mutagenesis, of an already thermostable protein, the L-lactate dehydrogenase (EC 1.1.1.27, 35 kDa per monomer subunit) from Bacillus stearothermophilus. Thermal inactivation of this enzyme is accompanied by irreversible unfolding of the native protein structure. The replacement of Arg171 by Tyr stabilizes the enzyme against thermal inactivation and unfolding. This stabilizing effect appears to be based on improved interactions between the subunits in the core of the active dimeric or tetrameric forms of the enzyme. The thermal stability of L-lactate dehydrogenase variants with an active site Arg residue, either in the 171 (wild-type) or in the 102 position, is further increased by sulfate ions. The two stabilizing effects are additive, as found for the Arg171Tyr/Gln102Arg double mutant, for which the stability of the protein in 100 mM sulfate solution reaches that of L-lactate dehydrogenases from extreme thermophiles. All mutant proteins retain significant catalytic activity, both in the presence and absence of stabilizing salts, and are viable catalysts in preparative scale reactions.  相似文献   

4.
5.
Clifton LA  Lad MD  Green RJ  Frazier RA 《Biochemistry》2007,46(8):2260-2266
External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m-1, followed by Pin-bH (7.9 +/- 1.6 mN m-1) and Pin-bS (6.3 +/- 1.0 mN m-1), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m-1); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.  相似文献   

6.
Antigen-specific and polyclonally induced T cell responses were analyzed in 10 HIV-infected individuals and in 14 controls by enumerating the numbers of tetanus toxoid (TT)-specific and phytohemagglutinin (PHA)-induced IFN-gamma-secreting cells (SC) and IL-4-SC using an enzyme-linked immunospot assay. Whereas the numbers of IFN-gamma-SC in HIV-infected patients were not different from those of the controls in response to an in vitro stimulation with PHA, they were significantly decreased in response to an in vitro stimulation with TT, both before and after a TT booster. Cell depletion experiments indicated that this difference was related to an impairment of CD4(+) T-cell-mediated TT-specific IFN-gamma secretion. Concerning IL-4, the numbers of both polyclonally induced IL-4-SC and TT-specific IL-4-SC were significantly lower in HIV-infected patients than in the controls. It is concluded that secretion of antigen-specific cytokines of both Th1 and Th2 types is depressed in HIV-infected patients.  相似文献   

7.
TCR signal transduction in antigen-specific memory CD8 T cells   总被引:4,自引:0,他引:4  
Memory T cells are more responsive to Ag than naive cells. To determine whether memory T cells also have more efficient TCR signaling, we compared naive, effector, and memory CD8 T cells of the same antigenic specificity. Surprisingly, initial CD3 signaling events are indistinguishable. However, memory T cells have more extensive lipid rafts with higher phosphoprotein content before TCR engagement. Upon activation in vivo, they more efficiently induce phosphorylation of-LAT (linker for activation of T cells), ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38. Thus, memory CD8 T cells do not increase their TCR sensitivity, but are better poised to augment downstream signals. We propose that this regulatory mechanism might increase signal transduction in memory T cells, while limiting TCR cross-reactivity and autoimmunity.  相似文献   

8.
Notch locus EGF-like element mutations spl, altering eye development, and AxE2, affecting wing and sensilla development, are modified by mutations at Delta. It is shown that two allele-specific suppressors of spl involve single amino acid substitutions in the 4th (Dlsup5) and 9th (Dlsup4) EGF-like elements of the Delta protein. Cultured cells producing spl or AxE2 aggregate with cells producing wild-type Delta or Dlsup5 protein, and Dlsup5-producing cells adhere to cells producing wild-type Notch protein. However, spl,AxE2, and Dlsup5 are each defective in promoting these cell affinities, as none of the mutant proteins can compete with the corresponding wild-type proteins for formation of cell aggregates. Thus, widely separated EGF-like elements of Notch and Delta appear to participate in functional molecular interactions between the proteins. Dlsup5 does not improve adhesiveness of spl in vitro, so suppression in vivo may involve altered developmental signaling by spl-Dlsup5 complexes, rather than modified cell adhesion.  相似文献   

9.
Infection of colonic epithelial cells by Shigella is associated with the type III secretion system, which serves as a molecular syringe to inject effectors into host cells. This system includes an extracellular needle used as a conduit for secreted proteins. Two of these proteins, IpaB and IpaD, dock at the needle tip to control secretion and are also involved in the insertion of a translocation pore into host cell membrane allowing effector delivery. To better understand the function of IpaD, we substituted thirteen residues conserved among homologous proteins in other bacterial species. Generated variants were tested for their ability to surface expose IpaB and IpaD, to control secretion, to insert the translocation pore, and to invade host cells. In addition to a first group of seven ipaD variants that behaved similarly to the wild-type strain, we identified a second group with mutations V314D and I319D that deregulated secretion of all effectors, but remained fully invasive. Moreover, we identified a third group with mutations Y153A, T161D, Q165L and Y276A, that exhibited increased levels of translocators secretion, pore formation, and cell entry. Altogether, our results offer a better understanding of the role of IpaD in the control of Shigella virulence.  相似文献   

10.
11.
The calcium-dependent homophilic cell adhesion molecule E-cadherin typically connects epithelial cells. The extracellular portion of the mature transmembrane protein consists of five homologous domains. The four sequences linking these domains contain the structural amino acid motif DXXD that is thought to be involved in direct calcium binding. In gastric cancer patients mutations affecting this motif between the second and third domain are frequently seen. In order to determine the functional significance of similar sequence alterations with regard to their location, we analyzed single amino acid substitutions changing the DXXD motif to DXXA in each linker region according to a mutation found in gastric cancer (D370A). The cDNA sequences coding for DQND, DVLD and DVND were changed (D257A, D479A, D590A, respectively) and stably expressed in E-cadherin negative MDA-MB-435S mammary carcinoma cells. We found that the D257A and D370A mutations result in abnormal protein localization, changes in the actin cytoskeleton, markedly reduced homophilic cell adhesion, and altered cell morphology. Unexpectedly, the tumor-associated D370A mutation but not the D257A mutation induced increased cell motility. The D479A mutation only had slight functional consequences whereas cells expressing the D590A mutant did not differ from cells expressing the wild-type molecule. Although the putative calcium binding motif DXXD is located at repetitive positions in the extracellular portion of E-cadherin, our results indicate that it has different functions depending on the location. Remarkably, tumor cells select for mutations in the most critical domains resulting both in loss of function (decreased cell adhesion) and in gain of function (increased cell motility). Since multiple DXXD motifs are typically seen in other cadherins, our structure-function study is relevant for this gene family in general.  相似文献   

12.
Three amino acid residues of bovine PRL (bPRL) have been examined for their roles in the mitogenic activity of the hormone in Nb2 lymphoma cell cultures. The residues of interest, R21, R177, and K187, are conserved in eight pituitary PRLs, but not in the related, nonlactogenic bGH. Using site-specific mutagenesis, a number of recombinant methionyl bPRL variants have been prepared, each of which contained a single amino acid substitution of one of the three residues; a variety of amino acids was used for substitution. Twelve exchanges of R177 (to A, L, N, K, D, E, Y, G, S, Q, H, and F) all led to marked decreases in mitogenic activity. Even the conservative change, R177K, led to a decrease in mitogenic activity of about 90%; all the other R177 substitutions led to even more marked decreases; there was essentially complete loss of activity when the positively charged R177 was replaced by the negatively charged aspartate. Exchanges of R21 (to A, L, N, and K) were less dramatic, with the greatest decrease (79%) occurring in the case of R21A. Exchanges of K187 (to A, L, N, and R) had a relatively minor effect on the mitogenic activity of the hormone. Residues R21 and R177 in bPRL are located in putative helices 1 and 4, respectively; in the three-dimensional structure of the hormone these residues are predicted to be quite closely apposed. The results suggest that R177 and, to a lesser degree, R21 have important roles in the mitogenic activity of bPRL.  相似文献   

13.
Studies of nucleotide diversity have found an excess of low-frequency amino acid polymorphisms segregating in Arabidopsis thaliana, suggesting a predominance of weak purifying selection acting on amino acid polymorphism in this inbreeding species. Here, we investigate levels of diversity and divergence at synonymous and nonsynonymous sites in 6 circumpolar populations of the outbreeding Arabidopsis lyrata and compare these results with A. thaliana, to test for differences in mutation and selection parameters across genes, populations, and species. We find that A. lyrata shows an excess of low-frequency nonsynonymous polymorphisms both within populations and species wide, consistent with weak purifying selection similar to the patterns observed in A. thaliana. Furthermore, nonsynonymous polymorphisms tend to be more restricted in their population distribution in A. lyrata, consistent with purifying selection preventing their geographic spread. Highly expressed genes show a reduced ratio of amino acid to synonymous change for both polymorphism and fixed differences, suggesting a general pattern of stronger purifying selection on high-expression proteins.  相似文献   

14.
Background  Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. Objective  This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. Results  Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. Conclusion  Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses. A. Gervais and J.-C. Eymard contributed equally to this work.  相似文献   

15.
kappa-Conotoxin PVIIA (kappa-PVIIA), a 27-amino acid peptide with three disulfide cross-links, isolated from the venom of Conus purpurascens, is the first conopeptide shown to inhibit the Shaker K(+) channel (Terlau, H., Shon, K., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B. M. (1996) Nature 381, 148-151). Recently, two groups independently determined the solution structure for kappa-PVIIA using NMR; although the structures reported were similar, two mutually exclusive models for the interaction of the peptide with the Shaker channel were proposed. We carried out a structure/function analysis of kappa-PVIIA, with alanine substitutions for all amino acids postulated to be key residues by both groups. Our data are consistent with the critical dyad model developed by Ménez and co-workers (Dauplais, M., Lecoq, A., Song, J. , Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C., Rowan, E. G., Harvey, A. L., and Ménez, A. (1997) J. Biol. Chem. 272, 4802-4809) for polypeptide antagonists of K(+) channels. In the case of kappa-PVIIA, Lys(7) and Phe(9) are essential for activity as predicted by Savarin et al. (Savarin, P., Guenneugues, M., Gilquin, B., Lamthanh, H., Gasparini, S., Zinn-Justin, S., and Ménez, A. (1998) Biochemistry 37, 5407-5416); these workers also correctly predicted an important role for Lys(25). Thus, although kappa-conotoxin PVIIA has no obvious sequence homology to polypeptide toxins from other venomous animals that interact with voltage-gated K(+) channels, there may be convergent functional features in diverse K(+) channel polypeptide antagonists.  相似文献   

16.
Procollagen VII is a homotrimer of 350-kDa pro-alpha1(VII) chains, each consisting of a central collagenous domain flanked by the noncollagenous N-terminal NC1 domain and the C-terminal NC2 domain. After secretion from cells, procollagen VII molecules form anti-parallel dimers with a C-terminal 60-nm overlap. Characteristic alignment of procollagen VII monomers forming a dimer depends on site-specific binding between the NC2 domain and the triple-helical region adjacent to Cys-2634 of the interacting procollagen VII molecules. Formation of the intermolecular disulfide bonds between Cys-2634 and either Cys-2802 or Cys-2804 is promoted by the cleavage of the NC2 domain by procollagen C-proteinase. By employing recombinant procollagen VII variants harboring G2575R, R2622Q, or G2623C substitutions previously disclosed in patients with dystrophic epidermolysis bullosa, we studied how these amino acid substitutions affect intermolecular interactions. Binding assays utilizing an optical biosensor demonstrated that the G2575R substitution increased affinity between mutant molecules. In contrast, homotypic binding between the R2622Q or G2623C molecules was not detected. In addition, kinetics of heterotypic binding of all analyzed mutants to wild type collagen VII were different from those for binding between wild type molecules. Moreover, solid-state binding assays demonstrated that R2622Q and G2623C substitutions prevent formation of stable assemblies of procollagen C-proteinase-processed mutants. These results indicate that single amino acid substitutions in procollagen VII alter its self-assembly and provide a basis for understanding the pathomechanisms leading from mutations in the COL7A1 gene to fragility of the dermal-epidermal junction seen in patients with dystrophic forms of epidermolysis bullosa.  相似文献   

17.
In mammals, the four native deoxyribonucleosides are phosphorylated to the corresponding monophosphates by four deoxyribonucleoside kinases, which have specialized substrate specificities. These four enzymes are likely to originate from a common progenitor kinase. Insects appear to have only one multisubstrate deoxyribonucleoside kinase (dNK, EC 2.7.1.145), which prefers pyrimidine nucleosides, but can also phosphorylate purine substrates. When the structures of the human deoxyguanosine kinase (dGK, EC 2.7.1.113) and the dNK from Drosophila melanogaster were compared, a limited number of amino acid residues were identified and proposed to be responsible for the substrate specificity. Three of these key residues in Drosophila dNK were then mutagenized and the mutant enzymes were characterized regarding their ability to phosphorylate native deoxyribonucleosides and nucleoside analogs. The mutations converted the dNK substrate specificity from predominantly pyrimidine specific into purine specific. A similar scenario could have been followed during the evolution of kinases. Upon gene duplication of the progenitor kinase, only a limited number of single amino acid changes has taken place in each copy and resulted in substrate-specialized enzymes.  相似文献   

18.
The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.  相似文献   

19.
We have previously characterized an influenza A (H1N1) virus which has host-dependent growth and receptor binding properties and have shown that a mutation which removes an oligosaccharide from the tip of the hemagglutinin (HA) by changing Asn-129 to Asp permits this virus to grow to high titer in MDBK cells, (C. M. Deom, A. J. Caton, and I. T. Schulze, Proc. Natl. Acad. Sci. USA 83:3771-3775, 1986). We have now isolated monoclonal antibodies specific for the mutant HA and have used escape mutants to identify alterations in HA sequence which reduce virus yields from MDBK cells without reducing those from chicken embryo fibroblasts. Two types of escape mutants which grow equally well in chicken embryo fibroblasts were obtained. Those with the parent phenotype contain Asn at residue 129 and are glycosylated at that site. Those with the mutant phenotype are unchanged at residue 129 but have a Gly to Glu substitution at residue 158, which is close to residue 129 on the HA1 subunit. Binding assays with neoglycoproteins containing N-acetylneuraminic acid in either alpha 2,3 or alpha 2,6 linkage to galactose showed that the MDBK-synthesized oligosaccharides at Asn-129 reduce binding to both of these receptors, leaving the HA's preference for alpha 2,6 linkages unchanged. Glu at residue 158 greatly reduces binding to both receptors without reducing virus yields from MDBK cells. We conclude that changes in the receptor binding properties of the HA can result either from direct alteration of the HA protein by host cell glycosylation or from mutations in the HA gene and that these changes generate heterogeneity that can contribute to the survival of influenza A virus populations in nature.  相似文献   

20.
The structural integrity of cartilage depends on the presence of extracellular matrices (ECM) formed by heterotypic fibrils composed of collagen II, collagen IX, and collagen XI. The formation of these fibrils depends on the site-specific binding between relatively small regions of interacting collagen molecules. Single amino acid substitutions in collagen II change the physicochemical and structural characteristics of those sites, thereby leading to an alteration of intermolecular collagen II/collagen IX interaction. Employing a biosensor to study interactions between R75C, R789C or G853E collagen II mutants and collagen IX, we demonstrated significant changes in the binding affinities. Moreover, analyses of computer models representing mutation sites defined exact changes in physicochemical characteristics of collagen II mutants. Our study shows that changes in collagen II/collagen IX affinity could represent one of the steps in a cascade of changes occurring in the ECM of cartilage as a result of single amino acid substitutions in collagen II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号