首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study repair of DNA double-strand breaks (DSBs) in mammalian chromosomes, we designed DNA substrates containing a thymidine kinase (TK) gene disrupted by the 18-bp recognition site for yeast endonuclease I-SceI. Some substrates also contained a second defective TK gene sequence to serve as a genetic donor in recombinational repair. A genomic DSB was induced by introducing endonuclease I-SceI into cells containing a stably integrated DNA substrate. DSB repair was monitored by selection for TK-positive segregants. We observed that intrachromosomal DSB repair is accomplished with nearly equal efficiencies in either the presence or absence of a homologous donor sequence. DSB repair is achieved by nonhomologous end-joining or homologous recombination, but rarely by nonconservative single-strand annealing. Repair of a chromosomal DSB by homologous recombination occurs mainly by gene conversion and appears to require a donor sequence greater than a few hundred base pairs in length. Nonhomologous end-joining events typically involve loss of very few nucleotides, and some events are associated with gene amplification at the repaired locus. Additional studies revealed that precise religation of DNA ends with no other concomitant sequence alteration is a viable mode for repair of DSBs in a mammalian genome.  相似文献   

2.
We established a mouse Ltk- cell line that contains within its genome a herpes simplex virus thymidine kinase gene (tk) that had been disrupted by the insertion of the recognition sequence for yeast endonuclease I-SceI. The artificially introduced 18 bp I-SceI recognition sequence was likely a unique sequence in the genome of the mouse cell line. To assess whether an induced double-strand break (DSB) in the genomic tk gene would be repaired preferentially by gene targeting or non-homologous recombination, we electroporated the mouse cell line with endonuclease I-SceI alone, one of two different gene targeting constructs alone, or with I-SceI in conjunction with each of the two targeting constructs. Each targeting construct was, in principle, capable of correcting the defective genomic tk sequence via homologous recombination. tk+ colonies were recovered following electroporation of cells with I-SceI in the presence or absence of a targeting construct. Through the detection of small deletions at the I-SceI recognition sequence in the mouse genome, we present evidence that a specific DSB can be introduced into the genome of a living mammalian cell by yeast endonuclease I-SceI. We further report that a DSB in the genome of a mouse Ltk- cell is repaired preferentially by non-homologous end-joining rather than by targeted homologous recombination with an exogenous donor sequence. The potential utility of this system is discussed.  相似文献   

3.
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.  相似文献   

4.
Lloyd AH  Wang D  Timmis JN 《PloS one》2012,7(2):e32255
DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1-20 bp) deletions occurred at a minority (25-45%) of repair junctions. Approximately ~1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ.  相似文献   

5.
The non-homologous end-joining (NHEJ) pathway is a mechanism to repair DNA double strand breaks, which can introduce mutations at repair sites. We constructed new cellular systems to specifically analyze sequence modifications occurring at the repair site. In particular, we looked for the presence of telomeric repeats at the repair junctions, since our previous work indicated that telomeric sequences could be inserted at break sites in germ-line cells during primate evolution. To induce specific DNA breaks, we used the I-SceI system of Saccharomyces cerevisiae or digestion with restriction enzymes. We isolated human and hamster cell lines containing the I-SceI target site integrated in a single chromosomal locus and we exposed the cells to a continuous expression of the I-SceI endonuclease gene. Additionally, we isolated human cell lines that expressed constitutively the I-SceI endonuclease and we introduced the target site on an episomal plasmid stably transfected into the cells. These strategies allowed us to recover repair junctions in which the I-SceI target site was modified at high frequency (100% in hamster cells and about 70% in human cells). Finally, we analyzed junctions produced on an episomal plasmid linearized by restriction enzymes. In all the systems studied, sequence analysis of individual repair junctions showed that deletions were the most frequent modifications, being present in more than 80% of the junctions. On the episomal plasmids, the average deletion length was greater than at intrachromosomal sites. Insertions of nucleotides or deletions associated with insertions were rare events. Junction organization suggested different mechanisms of formation. To check for the insertion of telomeric sequences, we screened plasmid libraries representing about 3.5 x 10(5) junctions with a telomeric repeat probe. No positive clones were detected, suggesting that the addition of telomeric sequences during double strand break repair in somatic cells in culture is either a very rare event or does not occur at all.  相似文献   

6.
S Salomon  H Puchta 《The EMBO journal》1998,17(20):6086-6095
To analyze genomic changes resulting from double-strand break (DSB) repair, transgenic tobacco plants were obtained that carried in their genome a restriction site of the rare cutting endonuclease I-SceI within a negative selectable marker gene. After induction of DSB repair via Agrobacterium-mediated transient expression of I-SceI, plant cells were selected that carried a loss-of-function phenotype of the marker. Surprisingly, in addition to deletions, in a number of cases repair was associated with the insertion of unique and repetitive genomic sequences into the break. Thus, DSB repair offers a mechanism for spreading different kinds of sequences into new chromosomal positions. This may have evolutionary consequences particularly for plants, as genomic alterations occurring in meristem cells can be transferred to the next generation. Moreover, transfer DNA (T-DNA), carrying the open reading frame of I-SceI, was found in several cases to be integrated into the transgenic I-SceI site. This indicates that DSB repair also represents a pathway for the integration of T-DNA into the plant genome.  相似文献   

7.
Capture of DNA sequences at double-strand breaks in mammalian chromosomes   总被引:8,自引:0,他引:8  
Lin Y  Waldman AS 《Genetics》2001,158(4):1665-1674
To study double-strand break (DSB)-induced mutations in mammalian chromosomes, we transfected thymidine kinase (tk)-deficient mouse fibroblasts with a DNA substrate containing a recognition site for yeast endonuclease I-SceI embedded within a functional tk gene. To introduce a genomic DSB, cells were electroporated with a plasmid expressing endonuclease I-SceI, and clones that had lost tk function were selected. Among 253 clones analyzed, 78% displayed small deletions or insertions of several nucleotides at the DSB site. Surprisingly, approximately 8% of recovered mutations involved the capture of one or more DNA fragments. Among 21 clones that had captured DNA, 10 harbored a specific segment of the I-SceI expression plasmid mapping between two replication origins on the plasmid. Four clones had captured a long terminal repeat sequence from an intracisternal A particle (an endogenous retrovirus-like sequence) and one had captured what appears to be a cDNA copy of a moderately repetitive B2 sequence. Additional clones displayed segments of the tk gene and/or microsatellite sequences copied into the DSB. This first systematic study of DNA capture at DSBs in a mammalian genome suggests that DSB repair may play a considerable role in the evolution of eukaryotic genomes.  相似文献   

8.
We assayed error-prone double-strand break (DSB) repair in wild-type and isogenic Mlh1-null mouse embryonic fibroblasts containing a stably integrated DSB repair substrate. The substrate contained a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene; the tk-neo fusion gene was disrupted in the tk portion by a 22bp oligonucleotide containing the 18 bp recognition site for endonuclease I-SceI. Following DSB-induction by transient expression of I-SceI endonuclease, cells that repaired the DSB by error-prone nonhomologous end-joining (NHEJ) and restored the correct reading frame to the tk-neo fusion gene were recovered by selecting for G418-resistant clones. The number of G418-resistant clones induced by I-SceI expression did not differ significantly between wild-type and Mlh1-deficient cells. While most DSB repair events were consistent with simple NHEJ in both wild-type and Mlh1-deficient cells, complex repair events were more common in wild-type cells. Furthermore, genomic deletions associated with NHEJ events were strikingly larger in wild-type versus Mlh1-deficient cells. Additional experiments revealed that the stable transfection efficiency of Mlh1-null cells is higher than that of wild-type cells. Collectively, our results suggest that Mlh1 modulates error-prone NHEJ by inhibiting the annealing of DNA ends containing noncomplementary base pairs or by promoting the annealing of microhomologies.  相似文献   

9.
Y Bellaiche  V Mogila  N Perrimon 《Genetics》1999,152(3):1037-1044
As a step toward the development of a homologous recombination system in Drosophila, we have developed a methodology to target double-strand breaks (DSBs) to a specific position in the Drosophila genome. This method uses the mitochondrial endonuclease I-SceI that recognizes and cuts an 18-bp restriction site. We find that >6% of the progeny derived from males that carry a marker gene bordered by two I-SceI sites and that express I-SceI in their germ line lose the marker gene. Southern blot analysis and sequencing of the regions surrounding the I-SceI sites revealed that in the majority of the cases, the introduction of DSBs at the I-SceI sites resulted in the complete deletion of the marker gene; the other events were associated with partial deletion of the marker gene. We discuss a number of applications for this novel technique, in particular its use to study DSB repair mechanisms.  相似文献   

10.
Puget N  Knowlton M  Scully R 《DNA Repair》2005,4(2):149-161
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of double-strand breaks arising during replication and is thought to be important for the prevention of genomic instability and cancer. Analysis of sister chromatid recombination at a molecular level has been limited by the difficulty of selecting specifically for these events. To overcome this, we have developed a novel "nested intron" reporter that allows the positive selection in mammalian cells of "long tract" gene conversion events arising between sister chromatids. We show that these events arise spontaneously in cycling cells and are strongly induced by a site-specific double-strand break (DSB) caused by the restriction endonuclease, I-SceI. Notably, some I-SceI-induced sister chromatid recombination events entailed multiple rounds of gene amplification within the reporter, with the generation of a concatemer of amplified gene segments. Thus, there is an intimate relationship between sister chromatid recombination control and certain types of gene amplification. Dysregulated sister chromatid recombination may contribute to cancer progression, in part, by promoting gene amplification.  相似文献   

11.
We investigated the effect of pifithrin-alpha (PFTalpha), a chemical inhibitor of p53, on DNA double-strand break (DSB) repair in mammalian chromosomes. Thymidine kinase-deficient mouse fibroblasts were stably transfected with DNA substrates containing one or two recognition sites for yeast endonuclease I-SceI embedded within a herpes simplex virus thymidine kinase gene. Genomic DSBs were induced by introducing an I-SceI expression plasmid into cells in the presence or absence of 20 microM PFTalpha. From cells containing the DNA substrate with a single I-SceI site we recovered low-fidelity nonhomologous end-joining (NHEJ) events in which one or more nucleotides were deleted or inserted at the DSB. From cells containing the substrate with two I-SceI sites we recovered high-fidelity DNA end-joining (precise ligation (PL)) events. We found that treatment of cells with PFTalpha caused a 5-10-fold decrease in recovery of PL but decreased recovery of NHEJ by less than two-fold. Deletion sizes associated with NHEJ were unaffected by treatment with PFTalpha. Our work suggests the possibility that p53 facilitates high-fidelity DSB repair while playing little or no role in mutagenic NHEJ.  相似文献   

12.
Smith JA  Waldman BC  Waldman AS 《Genetics》2005,170(1):355-363
We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions."  相似文献   

13.
BACKGROUND: Sequence-specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000-fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double-strand break (DSB)-induced HR. METHODS: In order to investigate DSB-induced HR in toto, we have designed transgenic mouse lines carrying a LagoZ gene interrupted by one I-SceI cleavage site surrounded by two direct repeats. The LagoZ gene can be rescued upon cleavage by I-SceI and HR between the two repeats in a process called single-strand annealing. beta-Galactosidase activity is monitored in liver after tail vein injection of adenovirus expressing the meganuclease I-SceI. RESULTS: In toto staining revealed a strong dotted pattern in all animals injected with adenovirus expressing I-SceI. In contrast, no staining could be detected in the control. beta-Galactosidase activity in liver extract, tissue section staining, and PCR analysis confirmed the presence of the recombined LagoZ gene. CONCLUSIONS: We demonstrate for the first time that meganucleases can be successfully delivered in animal and induce targeted genomic recombination in mice liver in toto. These results are an essential step towards the use of designed meganucleases and show the high potential of this technology in the field of gene therapy.  相似文献   

14.
15.
Chromosomal aberrations induced by double strand DNA breaks   总被引:4,自引:0,他引:4  
Varga T  Aplan PD 《DNA Repair》2005,4(9):1038-1046
It has been suggested that introduction of double strand DNA breaks (DSBs) into mammalian chromosomes can lead to gross chromosomal rearrangements through improper DNA repair. To study this phenomenon, we employed a model system in which a double strand DNA break can be produced in human cells in vivo at a predetermined location. The ensuing chromosomal changes flanking the breakage site can then be cloned and characterized. In this system, the recognition site for the I-SceI endonuclease, whose 18 bp recognition sequence is not normally found in the human genome, is placed between a strong constitutive promoter and the Herpes simplex virus thymidine kinase (HSV-tk) gene, which serves as a negative selectable marker. We found that the most common mutation following aberrant DSB repair was an interstitial deletion; these deletions typically showed features of non-homologous end joining (NHEJ), such as microhomologies and insertions of direct or inverted repeat sequences. We also detected more complex rearrangements, including large insertions from adjacent or distant genomic regions. The insertion events that involved distant genomic regions typically represented transcribed sequences, and included both L1 LINE elements and sequences known to be involved in genomic rearrangements. This type of aberrant repair could potentially lead to gene inactivation via deletion of coding or regulatory sequences, or production of oncogenic fusion genes via insertion of coding sequences.  相似文献   

16.
The UV hypersensitive CHO cell mutant UV41 is the archetypal XPF mammalian cell mutant, and was essential for cloning the human nucleotide excision repair (NER) gene XPF by DNA transfection and rescue. The ERCC1 and XPF genes encode proteins that form the heterodimer responsible for making incisions required in NER and the processing of certain types of recombination intermediates. In this study, we cloned and sequenced the CHO cell XPF cDNA, determining that the XPF mutation in UV41 is a +1 insertion in exon 8 generating a premature stop codon at amino acid position 499; however, the second allele of XPF is apparently unaltered in UV41, resulting in XPF heterozygosity. XPF expression was found to be several-fold lower in UV41 compared to its parental cell line, AA8. Using approaches we previously developed to study intrachromosomal recombination in CHO cells, we modified UV41 and its parental cell line AA8 to allow site-specific gene targeting at a Flp recombination target (FRT) in intron 3 of the endogenous adenine phosphoribosyltransferase (APRT) locus. Using FLP/FRT targeting, we integrated a plasmid containing an I-SceI endonuclease sequence into this site in the paired cell lines to generate a heteroallelic APRT duplication. Frequencies of intrachromosomal recombination between APRT heteroalleles and the structures of resulting recombinants were analyzed after I-SceI induction of site-specific double-strand breaks (DSBs) in a non-homologous insertion contained within APRT homology. Our results show that I-SceI induced a small proportion of aberrant recombinants reflecting DSB-induced deletions/rearrangements in parental, repair-proficient AA8 cells. However, in XPF mutant UV41, XPF heterozygosity is responsible for a similar, but much more pronounced genomic instability phenotype, manifested independently of DSB induction. In addition, gene conversions were suppressed in UV41 cells compared to wild-type cells. These observations suggest that UV41 exhibits a genomic instability phenotype of aberrant recombinational repair, confirming a critical role for XPF in mammalian cell recombination.  相似文献   

17.
To maintain genomic integrity, double-strand breaks (DSBs) in chromosomal DNA must be repaired. In mammalian systems, the analysis of the repair of chromosomal DSBs has been limited by the inability to introduce well-defined DSBs in genomic DNA. In this study, we created specific DSBs in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI. A genetic assay has been devised to monitor the repair of DSBs, whereby cleavage sites for I-SceI have been integrated into the mouse genome in two tandem neomycin phosphotransferase genes. We find that cleavage of the I-SceI sites is very efficient, with at least 12% of stably transfected cells having at least one cleavage event and, of these, more than 70% have undergone cleavage at both I-SceI sites. Cleavage of both sites in a fraction of clones deletes 3.8 kb of intervening chromosomal sequences. We find that the DSBs are repaired by both homologous and nonhomologous mechanisms. Nonhomologous repair events frequently result in small deletions after rejoining of the two DNA ends. Some of these appear to occur by simple blunt-ended ligation, whereas several others may occur through annealing of short regions of terminal homology. The DSBs are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude. Whereas gene-targeted clones are nearly undetectable without endonuclease expression, they represent approximately 10% of cells transfected with the I-SceI expression vector. Gene targeted clones are of two major types, those that occur by two-sided homologous recombination with the homologous fragment and those that occur by one-sided homologous recombination. Our results are expected to impact a number of areas in the study of mammalian genome dynamics, including the analysis of the repair of DSBs and homologous recombination and, potentially, molecular genetic analyses of mammalian genomes.  相似文献   

18.
Different DNA repair pathways that use homologous sequences in close proximity to genomic double-strand breaks (DSBs) result in either an internal deletion or a gene conversion. We determined the efficiency of these pathways in somatic plant cells of transgenic Arabidopsis lines by monitoring the restoration of the beta-glucuronidase (GUS) marker gene. The transgenes contain a recognition site for the restriction endonuclease I-SceI either between direct GUS repeats to detect deletion formation (DGU.US), or within the GUS gene to detect gene conversion using a nearby donor sequence in direct or inverted orientation (DU.GUS and IU.GUS). Without expression of I-SceI, the frequency of homologous recombination (HR) was low and similar for all three constructs. By crossing the different lines with an I-SceI expressing line, DSB repair was induced, and resulted in one to two orders of magnitude higher recombination frequency. The frequencies obtained with the DGU.US construct were about five times higher than those obtained with DU.GUS and IU.GUS, irrespective of the orientation of the donor sequence. Our results indicate that recombination associated with deletions is the most efficient pathway of homologous DSB repair in plants. However, DSB-induced gene conversion seems to be frequent enough to play a significant role in the evolution of tandemly arranged gene families like resistance genes.  相似文献   

19.
The use of adeno-associated virus (AAV) to package gene-targeting vectors as single-stranded linear molecules has led to significant improvements in mammalian gene-targeting frequencies. However, the molecular basis for the high targeting frequencies obtained is poorly understood, and there could be important mechanistic differences between AAV-mediated gene targeting and conventional gene targeting with transfected double-stranded DNA constructs. Conventional gene targeting is thought to occur by the double-strand break (DSB) model of homologous recombination, as this can explain the higher targeting frequencies observed when DSBs are present in the targeting construct or target locus. Here we compare AAV-mediated gene-targeting frequencies in the presence and absence of induced target site DSBs. Retroviral vectors were used to introduce a mutant lacZ gene containing an I-SceI cleavage site and to efficiently deliver the I-SceI endonuclease, allowing us to carry out these studies with normal and transformed human cells. Creation of DSBs by I-SceI increased AAV-mediated gene-targeting frequencies 60- to 100-fold and resulted in a precise correction of the mutant lacZ reporter gene. These experiments demonstrate that AAV-mediated gene targeting can result in repair of a DNA DSB and that this form of gene targeting exhibits fundamental similarities to conventional gene targeting. In addition, our findings suggest that the selective creation of DSBs by using viral delivery systems can increase gene-targeting frequencies in scientific and therapeutic applications.  相似文献   

20.
Wang Y  Smith K  Waldman BC  Waldman AS 《DNA Repair》2011,10(4):416-426
Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号