首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four and a half LIM domain protein 3 (FHL3) is a member of the FHL protein family that plays roles in the regulation of cell survival, cell adhesion and signal transduction. However, the mechanism of action for FHL3 is not yet clear. The aim of present study was to identify novel binding partner of FHL3 and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, FHL3 was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Methionine-1X was identified as a novel FHL3 binding partner. The interaction between FHL3 and the full length MT-1X was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore,the result demonstrated that MT-1X knockdown promoted the FHL3-induced inhibitory effect on HepG2 cells by regulating FHL3-mediated Smad signaling and involving in the modulation the expression of G2/M phase-related proteins through interaction with FHL3. These findings suggest that functional interactions between FHL3 and MT-1X may provide some clues to the mechanisms of FHL3-regulated cell proliferation.  相似文献   

2.
YBR267w designated REI1 (required for isotropic bud growth) was isolated by two-hybrid screening using NIS1 encoding the neck protein as bait. Disruption of REI1 exhibited cold sensitive growth but did not exhibit a morphological defect. However, Deltarei1Deltanap1, Deltarei1Deltacla4 and Deltarei1Deltagin4 double disruptants exhibited an elongated cell morphology, which was suppressed by the disruption of SWE1, indicating that REI1 is a new member of genes belonging to the mitotic signaling network that negatively regulates Swe1 kinase. Deltanap1 cells displayed a lower Gin4 kinase activity and a lower Gin4 protein level, both of which were recovered nearly to a wild type level in Deltarei1Deltanap1 cells. Interaction between Rei1 and Gin4 was suggested from our observation that Rei1 inhibited Gin4 kinase activity although weakly. The facts that although Deltarei1Deltanap1 cells displayed a severer elongated bud phenotype than Deltanap1 cells, Gin4 kinase activity in Deltarei1Deltanap1 cells was higher than in Deltanap1 cells, and that introduction of plasmid carrying a kinase inactive gin4 mutant gene into Deltarei1Deltagin4 cells suppressed their morphological defect, indicate that kinase activity of Gin4 is not required for isotropic bud growth. We found that Rei1 is localized to the cytoplasm throughout the cell cycle. In view of the fact that members belonging to the mitotic signaling network are localized to the bud neck, at least at some stage of the cell cycle, Rei1 is a unique component of this pathway.  相似文献   

3.
4.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

5.
Protein phosphotase Cdc14 (Cell division cycle gene 14) is a key regulator of late mitotic events in Saccharomyces cerevisiae. However the function of human Cdc14 (HsCdc14A & B) and its regulatory network are still elusive. In this study, we identified a new partner of HsCdc14A named Brap2 (BRCA1 associated protein 2) using yeast two-hybrid screening assay. The interaction between these two proteins is confirmed by co-immunoprecipitation in human HEK 293T cells. Brap2 co-localizes with HsCdc14A on mitotic spindle poles and over-expression of Brap2 causes multiple spindle poles. Furthermore, we found that Brap2, which has intrinsic RING domain dependent E3 ligase activity, facilitates HsCdc14A Lys-63 linked ubiquitin modification, indicating that Brap2 may be the ubiquitin E3 Ligase of HsCdc14A. Our findings imply that Brap2 plays a significant role in cell cycle regulation besides its facilitation of HsCdc14A ubiquitination.  相似文献   

6.
Xia W  Fu W  Cai L  Kong H  Cai X  Liu J  Wang Y  Zou M  Xu D 《Gene》2012,504(2):233-237
Angiogenin (Ang) is known to induce cell proliferation and inhibit apoptosis by cellular signaling pathways and by direct nuclear functions of Ang, but the mechanism of action for Ang is not yet clear. The aim of present study was to identify novel binding partner of Ang and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, Ang was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Four and a half LIM domains 3 (FHL3) was identified as a novel Ang binding partner. The interaction between Ang and the full length FHL3 was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore, FHL3 was required for Ang-mediated HeLa cell proliferation and nuclear translocation of Ang. These findings suggest that the interaction between Ang and FHL3 may provide some clues to the mechanisms of Ang-regulated cell growth and apoptosis.  相似文献   

7.
目的 利用酵母双杂交技术从人脑cDNA文库中筛选与人GATA-1相互作用的蛋白质.方法 从人K562细胞中扩增出全长GATA1基因,设计引物将其3段截断体亚克隆入酵母表达载体pDBLeu中,转化至AH109感受态酵母中,利用酵母双杂交技术筛选人脑cDNA文库中与其相互作用的蛋白质,阳性克隆通过回转及免疫共沉淀试验进行验证,利用3xGATA荧光素酶报告基因对相互作用蛋白质进行功能验证.结果 成功构建出酵母诱饵蛋白表达质粒pDBLeu-GATA1(1),pDBLeu-GATA1(2),pDBLeu-GATA1(3),筛到34个阳性克隆,用生物信息学分析及回转验证得到5个与GATA-1相互作用的候选蛋白,通过免疫共沉淀试验进一步验证,获得3个蛋白质能与GATA-1相互作用,分别是ECSIT,EFEMP1和GPS2.荧光素酶试验表明这3个蛋白质均能对GATA1的转录活性产生影响,证实它们之间的相互作用具有影响GATA1转录的功能.结论 应用酵母双杂交技术及免疫共沉淀试验,从人脑cDNA文库中成功获得3个与GATA-1相互作用并对其转录活性具有调节作用的蛋白质,为研究GATA1蛋白质的功能提供了新的线索.  相似文献   

8.
The MHV-68 latent protein, M2, does not have homology to any known viral or cellular proteins, and its function is unclear. To define the role played by M2 during MHV-68 latency as well as the molecular mechanism involved, we used M2 as bait to screen a yeast two-hybrid mouse B-cell cDNA library. Vav1 was identified as an M2-interacting protein in two independent screenings. Subsequent yeast two-hybrid interaction studies showed that M2 also binds to Vav2, but not Vav3, and that three "PXXP" motifs located at the C terminus of M2 are important for this interaction. The interactions between M2 and Vav proteins were also confirmed in vivo in 293T and WEHI-231 B-cells by co-immunoprecipitation assays. Rac1/GST-PAK "pull-down" experiments and Western blot analysis using a phospho-Vav antibody demonstrated that expression of M2 in WEHI-231 cells enhances Vav activity. We further showed in WEHI-231 cells that M2 expression promotes proliferation and survival and is associated with enhanced cyclin D2 and repressed p27(Kip1), p130, and Bim expression. Taken together, these experiments suggest that M2 might have an important role in disseminating the latent virus during the establishment and maintenance of latency by modulating B-cell receptor-mediated signaling events through Vav to promote B-cell activation, proliferation, and survival.  相似文献   

9.
人巨细胞病毒(HCMV) UL23基因编码病毒皮层蛋白,该基因缺失时,病毒在人包皮成纤维细胞(HFF)中的繁殖速度加快.为进一步阐述HCMV UL23基因编码产物 pUL23的功能及调控机制,采用鸟枪法构建了融合于GAL4活性区域的HCMV Towne株 基因组随机表达文库.利用酵母双杂交技术,以pGBKT7 -UL23为诱饵质粒,从构建 的HCMV基因组表达文库中筛选到与pUL23相互作用的病毒编码蛋白pUL24. GST-pull down实验和免疫共沉淀实验进一步确认两种病毒蛋白之间的相互作用.结果 表明,构建的HCMV基因组表达文库能够用于GAL4酵母双杂交系统筛选与诱饵蛋白相互作用的病毒自身编码蛋白.病毒蛋白pUL23和pUL24之间具有相互作用,这为进一 步阐述pUL23在HCMV感染过程中的功能提供依据.该研究为揭示HCMV病毒感染机制奠定了基础.  相似文献   

10.
11.
Screening of a human brain cDNA library using the C-terminal tail of the melanin-concentrating hormone receptor 1 (MCHR1) as bait in a yeast two-hybrid assay resulted in the identification of the neurite-outgrowth related factor, neurochondrin. This interaction was verified in overlay, pulldown, and co-immunoprecipitation assays. Deletion mapping confined the binding to the C terminus of neurochondrin and to the proximal C terminus of MCHR1, a region known to be involved in G protein binding and signal transduction. This region of the MCHR1 is also able to interact with the actin- and intermediate filament-binding protein, periplakin. Interactions of MCHR1 with neurochondrin and periplakin were competitive, indicating that these two proteins bind to overlapping regions of MCHR1. Although neurochondrin did not interfere with melanin-concentrating hormone-mediated internalization of the receptor, it did inhibit G protein-coupled signal transduction via both Galpha(i/o) and Galpha(q/11) family G proteins as measured by each of melanin-concentrating hormone-induced G protein-activated inwardly rectifying K(+) channel activity of voltage-clamped amphibian oocytes, by calcium mobilization in transfected mammalian cells, and by reduction in the capacity of melanin-concentrating hormone to promote binding of [(35)S]guanosine 5'-3-O-(thio)triphosphate to both Galpha(o1) and Galpha(11). Immunohistochemistry revealed co-expression of neurochondrin and MCHR1 within the rodent brain, suggesting that neurochondrin may be involved in the regulation of MCHR1 signaling and play a role in modulating melanin-concentrating hormone-mediated functions in vivo.  相似文献   

12.
In yeast two-hybrid screening using gamma1-adaptin, a subunit of the AP-1 adaptor complex of clathrin-coated vesicles derived from the trans-Golgi network (TGN), as bait, we found that it could interact with Rabaptin-5, an effector of Rab5 and Rab4 that regulates membrane docking with endosomes. Further two-hybrid analysis revealed that the interaction occurs between the ear domain of gamma1-adaptin and the COOH-terminal coiled-coil region of Rabaptin-5. Pull down assay with a fusion protein between glutathione S-transferase and the ear domain of gamma1-adaptin and coimmunoprecipitation analysis revealed that the interaction occurs in vitro and in vivo. Immunocytochemical analysis showed that gamma1-adaptin and Rabaptin-5 colocalize to a significant extent on perinuclear structures, probably on recycling endosomes, and are redistributed into the cytoplasm upon treatment with brefeldin A. These results suggest that the gamma1-adaptin-Rabaptin-5 interaction may play a role in membrane trafficking between the TGN and endosomes.  相似文献   

13.
为了深入研究Wnt信号的传导机制 ,利用GAL4酵母双杂交系统 ,以Wnt受体LRP6的胞内区为诱饵蛋白 ,筛选小鼠 11 5d胚胎cDNA文库 ,发现了一个新的LRP6相互作用蛋白 :黑色素瘤相关抗原MAAT1p15 (melanoma associatedantigenrecognizedbycytotoxicTlymphocytesp15 ) .免疫共沉淀方法证明了LRP6胞内区和MAAT1p15在哺乳动物细胞中也存在相互作用 .荧光素酶报告系统分析实验显示 ,MAAT1p15能够明显增强Wnt1和LRP6响应的下游基因的转录活性 ,提示MAAT1p15可能是LRP6的一个辅助蛋白  相似文献   

14.
Interaction between Snapin and G-CSF receptor   总被引:2,自引:0,他引:2  
Yuan X  Shan Y  Zhao Z  Chen J  Cong Y 《Cytokine》2006,33(4):219-225
Granulocyte colony-stimulating factor (G-CSF) is the major cytokine involved in the control of neutrophil development. G-CSF activates the special receptor, the G-CSF receptor (GCSF-R), which subsequently triggers multiple signaling events. To obtain more interactive molecules with GCSF-R and to further understand the cellular signaling mechanism of GCSF-R, yeast two-hybrid system was used to screen a mouse liver library. Here, the interaction of GCSF-R and Snapin was found by yeast two-hybrid experiment, and the interaction of the two proteins was further confirmed by GST pull-down experiment, mammalian two-hybrid experiment and co-immunoprecipitation study. Moreover, the immuno-fluorescence assay was shown that the two proteins of GCSF-R with Snapin were co-localized in the cytoplasm and plasma membrane. The region of C-terminal GCSF-R between box2 and box3, including the residue Tyr703, was responsible for the interaction with Snapin. These data suggested that Snapin is a new interactive protein of GCSF-R.  相似文献   

15.
Hsp100/Clp proteins have crucial functions in the protein quality control, stress tolerance, and virulence of many pathogenic bacteria. ClpE is an important virulence factor involved in adherence and invasion in Streptococcus pneumoniae. To explore the underlying mechanism, we screened ClpE interaction proteins using a bacterial two-hybrid system and co-immunoprecipitation. We used ClpE as bait and constructed the pBT-ClpE bait plasmid for two-hybrid screening. Then, we constructed ClpE::GFP fusion for co-immunoprecipitation screening using anti-GFP monoclonal antibody. We obtained eight potential ClpE interaction proteins, including carbamoyl-phosphate synthase, pyruvate oxidase (SpxB), phosphoenolpyruvate-protein phosphotransferase, aminopeptidase N (pepN), L-lactate dehydrogenase, ribosomal protein S4, sensor histidine kinase (SPD_2019), and FtsW (a cell division protein). FtsW, SpxB, pepN, and SPD_2019 were confirmed to interact with ClpE using Bacterial Two-hybrid or Co-immunoprecipitation. Morphologic observations found that ΔclpE strain existed in abnormal division. β-Galactosidase activity assay suggested that ClpE contributed to the degradation of FtsW. Furthermore, FtsW could be induced by heat shock. The results suggested that ClpE might affect cell division by regulating the level of FtsW. These data may provide new insights in studying the role of ClpE in S. pneumoniae.  相似文献   

16.
Plant defensins, components of the plant innate immune system, are cationic cysteine-rich antifungal peptides. Evidence from the literature [Thevissen, K., et al. (2003) Peptides 24, 1705-1712] has demonstrated that patches of fungi membrane containing mannosyldiinositolphosphorylceramide and glucosylceramides are selective binding sites for the plant defensins isolated from Dahlia merckii and Raphanus sativus, respectively. Whether plant defensins interact directly or indirectly with fungus intracellular targets is unknown. To identify physical protein-protein interactions, a GAL4-based yeast two-hybrid system was performed using the antifungal plant peptide Pisum sativum defensin 1 (Psd1) as the bait. Target proteins were screened within a Neurospora crassa cDNA library. Nine out of 11 two-hybrid candidates were nuclear proteins. One clone, detected with high frequency per screening, presented sequence similarity to a cyclin-like protein, with F-box and WD-repeat domains, related to the cell cycle control. GST pull-down assay corroborated in vitro this two-hybrid interaction. Fluorescence microscopy analysis of FITC-conjugated Psd1 and DAPI-stained fungal nuclei showed in vivo the colocalization of the plant peptide Psd1 and the nucleus. Analysis of the DNA content of N. crassa conidia using flow cytometry suggested that Psd1 directed cell cycle impairment and caused conidia to undergo endoreduplication. The developing retina of neonatal rats was used as a model to observe the interkinetic nuclear migration during proliferation of an organized tissue from the S toward the M phase of the cell cycle in the presence of Psd1. The results demonstrated that the plant defensin Psd1 regulates interkinetic nuclear migration in retinal neuroblasts.  相似文献   

17.
Li T  Duan W  Yang H  Lee MK  Bte Mustafa F  Lee BH  Teo TS 《FEBS letters》2001,488(3):201-205
By the use of the yeast two-hybrid screen we have identified two proteins that interacted with UCH37: S14, which is a subunit of PA700 and a novel protein, UIP1 (UCH37 interacting protein 1). The interaction of UCH37 with S14 or UIP1 was confirmed by in vitro binding assay and in vivo co-immunoprecipitation analysis. The C-terminal extension of UCH37 is essential for interaction with S14 or UIP1 as shown by the yeast two-hybrid assay and the in vitro binding assay. Furthermore, UIP1 blocked the interaction between UCH37 and S14 in vitro.  相似文献   

18.
Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.  相似文献   

19.
为了解水稻(Oryza sativa)组蛋白去乙酰化酶HDA705的生物学功能,构建了HDA705酵母双杂交诱饵表达载体与双杂交文库,并筛选了与HDA705相互作用的蛋白。结果表明,HDA705的诱饵载体无自激活活性且对酵母无毒性作用,文库的滴度也适合常规的酵母双杂交文库筛选。通过对酵母双杂交文库的筛选,共获得了164个阳性克隆,经DNA测序分析,这些克隆编码47个可能与HDA705相互作用的蛋白,其中包括3个在逆境响应或激素信号转导过程中起到重要作用的(辅)转录因子、6个参与光合作用的叶绿体蛋白、1个含有R3H结构域的蛋白以及22种酶类等。这为进一步研究HDA705的生物学功能提供了重要的线索。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号