首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yehui Xiong  Lirong Zeng  Wende Liu 《Proteomics》2016,16(14):1949-1951
Similar to substrate‐conjugated polyubiquitin, unanchored polyubiquitin chains are emerging as important regulators for diverse biological processes. The affinity purification of unanchored polyubiquitin from various organisms has been reported, however, tools able to distinguish unanchored polyubiquitin chains with different isopeptide linkages have not yet been described. Toward the goal of selectively identifying and purifying unanchored polyubiquitin chains linked through different Lysines, Scott et al. developed a novel strategy in their study [Proteomics 2016, 16, 1961–1969]. They designed a linker‐optimized ubiquitin‐binding domain hybrid (t‐UBD) containing two UBDs, a ZnFCUBP domain, and a linkage‐selective UBA domain, to specifically recognize unanchored Lys48‐linked polyubiquitin chains. Subsequently, a series of assays has proved the feasibility of this novel strategy for the purification of endogenous substrate‐free Lys48‐linked polyubiquitin chains from mammalian cell extracts. Their research not only provides a tool for purifying unanchored polyubiquitin with different isopeptide linkages, but also paves the way for generating reagents to study the function of unanchored polyubiquitin chains of different linkages in the future. The design of UBD hybrids for defined unanchored polyubiquitin (Lys48‐polyubiquitin) in this study also set an excellent example for future methodology studies regarding monitoring in vivo dynamic changes in the patterns of ubiquitination.  相似文献   

2.
The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage‐selective recognition of Ub chains by Ub‐binding domain (UBD)‐containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY‐1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48‐linked polyUb. We here identify that this linkage‐selective binding is mediated by a single MIU motif (MIU2) in MINDY‐1. The crystal structure of MIU2 in complex with K48‐linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48‐linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.  相似文献   

3.
The diverse influences of ubiquitin, mediated by its post-translational covalent modification of other proteins, have been extensively investigated. However, more recently roles for unanchored (nonsubstrate linked) polyubiquitin chains have also been proposed. Here we describe the use of ubiquitin-binding domains to affinity purify endogenous unanchored polyubiquitin chains and their subsequent characterization by mass spectrometry (MS). Using the A20 Znf domain of the ubiquitin receptor ZNF216 we isolated a protein from skeletal muscle shown by a combination of nanoLC-MS and LC-MS/MS to represent an unmodified and unanchored K48-linked ubiquitin dimer. Selective purification of unanchored polyubiquitin chains using the Znf UBP (BUZ) domain of USP5/isopeptidase-T allowed the isolation of K48 and K11-linked ubiquitin dimers, as well as revealing longer chains containing as many as 15 ubiquitin moieties, which include the K48 linkage. Top-down nanoLC-MS/MS of the A20 Znf-purified ubiquitin dimer generated diagnostic ions consistent with the presence of the K48 linkage, illustrating for the first time the potential of this approach to probe connectivity within endogenous polyubiquitin modifications. As well as providing initial proteomic insights into the molecular composition of endogenous unanchored polyubiquitin chains, this work also represents the first definition of polyubiquitin chain length in vivo.  相似文献   

4.
At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63‐linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48‐linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin‐binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF‐κB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.  相似文献   

5.
Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48‐linked polyubiquitin chain. In contrast, modifications with the Lys63‐linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome‐independent cellular processes. Nevertheless, the ubiquitin chain‐type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin‐ligase in budding yeast, catalyzes the formation of Lys63‐linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63‐linked ubiquitinated substrate in vitro. To examine whether Lys63‐linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2‐p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63‐linkages, and the Lys63‐linked chains were sufficient for the proteasome‐binding and subsequent p120‐processing. In addition, Lys63‐linked chains as well as Lys48‐linked chains were detected in the 26S proteasome‐bound polyubiquitinated proteins. These results raise the possibility that Lys63‐linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo.  相似文献   

6.
Reading the ubiquitin postal code   总被引:1,自引:0,他引:1  
Polyubiquitin chains are assembled through the formation of an isopeptide bond between a lysine side-chain or terminal amino group of a proximal ubiquitin moiety and the carboxy-terminal of a distal ubiquitin moiety. Protein substrates tagged by polyubiquitin chains of different linkages undergo different fates. Many polyubiquitin chain types have been characterized so far, notably Lys11, Lys48, Lys63 and linear chains. These different types of chains are synthesized, disassembled and recognized by selective enzymes and receptors. Here I survey the structural basis for the selective binding of polyubiquitin chains of specific linkages, with an emphasis on recent advances in our understanding of polyubiquitin chain structure and functions. Recent work suggests linkage-type discrimination by members of the NF-κb signalling and DNA repair pathways and a specific role for Lys48-linked polyubiquitin chain recognition by proteasome-associated proteins.  相似文献   

7.
GTP cyclohydrolase 1 (GTPCH1) is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4). GTPCH1 protein degradation has been reported in animal models of several diseases, including diabetes mellitus and hypertension. However, the molecular mechanisms by which GTPCH1 is degraded remain uncharacterized. Here we report a novel non-covalent interaction between polyubiquitin and GTPCH1 in vitro and in vivo. The non-covalent binding of GTPCH1 to polyubiquitin via an ubiquitin-binding domain (UBD) results in ubiquitination and degradation. Ectopic expression of ubiquitin in cultured cells accelerated GTPCH1 degradation. In cultured cells and in vitro assays, Lys48-linked ubiquitin chains, but not Lys63-linked chains, interacted with GTPCH1 and targeted it for degradation. Consistently, proteasome inhibition attenuated GTPCH1 degradation. Finally, direct mutagenesis of an isoleucine (Ile131) in the hydrophobic patch of the GTPCH1 UBD affected its ubiquitin binding and the enzyme stability. Taken together, we conclude that GTPCH1 non-covalently interacts with polyubiquitin via an ubiquitin-binding domain. The polyubiquitin binding directs GTPCH1 ubiquitination and proteasome degradation.  相似文献   

8.
TAB2 and TAB3 activate the Jun N‐terminal kinase and nuclear factor‐κB pathways through the specific recognition of Lys 63‐linked polyubiquitin chains by its Npl4 zinc‐finger (NZF) domain. Here we report crystal structures of the TAB2 and TAB3 NZF domains in complex with Lys 63‐linked diubiquitin at 1.18 and 1.40 Å resolutions, respectively. Both NZF domains bind to the distal ubiquitin through a conserved Thr‐Phe dipeptide that has been shown to be important for the interaction of the NZF domain of Npl4 with monoubiquitin. In contrast, a surface specific to TAB2 and TAB3 binds the proximal ubiquitin. Both the distal and proximal binding sites of the TAB2 and TAB3 NZF domains recognize the Ile 44‐centred hydrophobic patch on ubiquitin but do not interact with the Lys 63‐linked isopeptide bond. Mutagenesis experiments show that both binding sites are required to enable binding of Lys 63‐linked diubiquitin. We therefore propose a mechanism for the recognition of Lys 63‐linked polyubiquitin chains by TAB2 and TAB3 NZF domains in which diubiquitin units are specifically recognized by a single NZF domain.  相似文献   

9.
Ubiquitin chain complexity in cells is likely regulated by a diverse set of deubiquitinating enzymes (DUBs) with distinct ubiquitin chain preferences. Here we show that the polyglutamine disease protein, ataxin-3, binds and cleaves ubiquitin chains in a manner suggesting that it functions as a mixed linkage, chain-editing enzyme. Ataxin-3 cleaves ubiquitin chains through its amino-terminal Josephin domain and binds ubiquitin chains through a carboxyl-terminal cluster of ubiquitin interaction motifs neighboring the pathogenic polyglutamine tract. Ataxin-3 binds both Lys(48)- or Lys(63)-linked chains yet preferentially cleaves Lys(63) linkages. Ataxin-3 shows even greater activity toward mixed linkage polyubiquitin, cleaving Lys(63) linkages in chains that contain both Lys(48) and Lys(63) linkages. The ubiquitin interaction motifs regulate the specificity of this activity by restricting what can be cleaved by the protease domain, demonstrating that linkage specificity can be determined by elements outside the catalytic domain of a DUB. These findings establish ataxin-3 as a novel DUB that edits topologically complex chains.  相似文献   

10.
11.
Although functional diversity in polyubiquitin chain signaling has been ascribed to the ability of differently linked chains to bind in a distinctive manner to effector proteins, structural models of such interactions have been lacking. Here, we use NMR to unveil the structural basis of selective recognition of Lys48-linked di- and tetraubiquitin chains by the UBA2 domain of hHR23A. Although the interaction of UBA2 with Lys48-linked diubiquitin involves the same hydrophobic surface on each ubiquitin unit as that utilized in monoubiquitin:UBA complexes, our results show how the "closed" conformation of Lys48-linked diubiquitin is crucial for high-affinity binding. Moreover, recognition of Lys48-linked diubiquitin involves a unique epitope on UBA, which allows the formation of a sandwich-like diubiqutin:UBA complex. Studies of the UBA-tetraubiquitin interaction suggest that this mode of UBA binding to diubiquitin is relevant for longer chains.  相似文献   

12.
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin‐conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin‐binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63‐linked polyubiquitin and facilitates the selective assembly of K48/K63‐branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.  相似文献   

13.
Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.  相似文献   

14.
Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of approximately 130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys(48) linkages, having little or no activity on Lys(63)- and Lys(29)-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.  相似文献   

15.
Numerous cellular processes are regulated by (poly)ubiquitin-mediated signaling events, which involve a covalent modification of the substrate protein by a single ubiquitin or a chain of ubiquitin molecules linked via a specific lysine. Remarkably, the outcome of polyubiquitination is linkage-dependent. For example, Lys48-linked chains are the principal signal for proteasomal degradation, while Lys63-linked chains act as nonproteolytic signals. Despite significant progress in characterization of various cellular pathways involving ubiquitin, understanding of the structural details of polyubiquitin chain recognition by downstream cellular effectors is missing. Here we use NMR to study the interaction of a ubiquitin-interacting motif (UIM) of the proteasomal subunit S5a with di-ubiquitin, the simplest model for polyubiquitin chain, to gain insights into the mechanism of polyubiquitin recognition by the proteasome. We have mapped the binding interface and characterized the stoichiometry and the process of UIM binding to Lys48- and Lys63-linked di-ubiquitin chains. Our data provide the first direct evidence that UIM binding involves a conformational transition in Lys48-linked di-ubiquitin, which opens the hydrophobic interdomain interface. This allows UIM to enter the interface and bind directly to the same ubiquitin hydrophobic-patch surface as utilized in UIM:monoubiquitin complexes. The results indicate that up to two UIM molecules can bind di-ubiquitin, and the binding interface between UIM and ubiquitin units in di-ubiquitin is essentially the same for both Lys48- and Lys63-linked chains. Our data suggest possible structural models for the binding of UIM and of full-length S5a to di-ubiquitin.  相似文献   

16.
Diverse cellular events are regulated by post-translational modification of substrate proteins via covalent attachment of one or a chain of ubiquitin molecules. The outcome of (poly)ubiquitination depends upon the specific lysine residues involved in the formation of polyubiquitin chains. Lys48-linked chains act as a universal signal for proteasomal degradation, whereas Lys63-linked chains act as a specific signal in several non-degradative processes. Although it has been anticipated that functional diversity between alternatively linked polyubiquitin chains relies on linkage-dependent differences in chain conformation/topology, direct structural evidence in support of this model has been lacking. Here we use NMR methods to determine the structure of a Lys63-linked di-ubiquitin chain. The structure is characterized by an extended conformation, with no direct contact between the hydrophobic residues Leu8, Ile44, and Val70 on the ubiquitin units. This structure contrasts with the closed conformation observed for Lys48-linked di-ubiquitin wherein these residues form the interdomain interface (Cook, W. J., Jeffrey, L. C., Carson, M., Zhijian, C., and Pickart, C. M. (1992) J. Biol. Chem. 267, 16467-16471; Varadan, R., Walker, O., Pickart, C., and Fushman, D. (2002) J. Mol. Biol. 324, 637-647). Consistent with the open conformation of the Lys(63)-linked di-ubiquitin, our binding studies show that both ubiquitin domains in this chain can bind a ubiquitin-associated domain from HHR23A independently and in a mode similar to that for mono-ubiquitin. In contrast, Lys48-linked di-ubiquitin binds in a different, higher affinity mode that has yet to be determined. This is the first experimental evidence that alternatively linked polyubiquitin chains adopt distinct conformations.  相似文献   

17.
VHS (Vps27, Hrs, and STAM) domains occur in ESCRT‐0 subunits Hrs and STAM, GGA adapters, and other trafficking proteins. The structure of the STAM VHS domain–ubiquitin complex was solved at 2.6 Å resolution, revealing that determinants for ubiquitin recognition are conserved in nearly all VHS domains. VHS domains from all classes of VHS‐domain containing proteins in yeast and humans, including both subunits of ESCRT‐0, bound ubiquitin in vitro. ESCRTs have been implicated in the sorting of Lys63‐linked polyubiquitinated cargo. Intact human ESCRT‐0 binds Lys63‐linked tetraubiquitin 50‐fold more tightly than monoubiquitin, though only 2‐fold more tightly than Lys48‐linked tetraubiquitin. The gain in affinity is attributed to the cooperation of flexibly connected VHS and UIM motifs of ESCRT‐0 in avid binding to the polyubiquitin chain. Mutational analysis of all the five ubiquitin‐binding sites in yeast ESCRT‐0 shows that cooperation between them is required for the sorting of the Lys63‐linked polyubiquitinated cargo Cps1 to the vacuole.  相似文献   

18.
The ubiquitin system plays important roles in the regulation of numerous cellular processes by conjugating ubiquitin to target proteins. In most cases, conjugation of polyubiquitin to target proteins regulates their function. In the polyubiquitin chains reported to date, ubiquitin monomers are linked via isopeptide bonds between an internal Lys and a C-terminal Gly. Here, we report that a protein complex consisting of two RING finger proteins, HOIL-1L and HOIP, exhibits ubiquitin polymerization activity by recognizing ubiquitin moieties of proteins. The polyubiquitin chain generated by the complex is not formed by Lys linkages, but by linkages between the C- and N-termini of ubiquitin, indicating that the ligase complex possesses a unique feature to assemble a novel head-to-tail linear polyubiquitin chain. Moreover, the complex regulates the stability of Ub-GFP (a GFP fusion protein with an N-terminal ubiquitin). The linear polyubiquitin chain generated post-translationally may function as a new modulator of proteins.  相似文献   

19.
It is generally assumed that a specific ubiquitin ligase (E3) links protein substrates to polyubiquitin chains containing a single type of isopeptide linkage, and that chains composed of linkages through Lys(48), but not through Lys(63), target proteins for proteasomal degradation. However, when we carried out a systematic analysis of the types of ubiquitin (Ub) chains formed by different purified E3s and Ub-conjugating enzymes (E2s), we found, using Ub mutants and mass spectrometry, that the U-box E3, CHIP, and Ring finger E3s, MuRF1 and Mdm2, with the E2, UbcH5, form a novel type of Ub chain that contains all seven possible linkages, but predominantly Lys(48), Lys(63), and Lys(11) linkages. Also, these heterogeneous chains contain forks (bifurcations), where two Ub molecules are linked to the adjacent lysines at Lys(6) + Lys(11), Lys(27) + Lys(29), or Lys(29) + Lys(33) on the preceding Ub molecule. However, the HECT domain E3s, E6AP and Nedd4, with the same E2, UbcH5, form homogeneous chains exclusively, either Lys(48) chains (E6AP) or Lys(63) chains (Nedd4). Furthermore, with other families of E2s, CHIP and MuRF1 synthesize homogeneous Ub chains on the substrates. Using the dimeric E2, UbcH13/Uev1a, they attach Lys(63) chains, but with UbcH1 (E2-25K), MuRF1 synthesizes Lys(48) chains on the substrate. We then compared the capacity of the forked heterogeneous chains and homogeneous chains to support proteasomal degradation. When troponin I was linked by MuRF1 to a Lys(48)-Ub chain or, surprisingly, to a Lys(63)-Ub chain, troponin I was degraded rapidly by pure 26S proteasomes. However, when linked to the mixed forked chains, troponin I was degraded quite poorly, and its polyUb chain, especially the forked linkages, was disassembled slowly by proteasome-associated isopeptidases. Because these Ring finger and U-box E3s with UbcH5 target proteins for degradation in vivo, but Lys(63) chains do not, cells probably contain additional factors that prevent formation of such nondegradable Ub-conjugates and that protect proteins linked to Lys(63)-Ub chains from proteasomal degradation.  相似文献   

20.
As the upstream component of the ESCRT (endosomal sorting complexes required for transport) machinery, the ESCRT-0 complex is responsible for directing ubiquitinated membrane proteins to the multivesicular body pathway. ESCRT-0 is formed by two subunits known as Hrs (hepatocyte growth factor-regulated substrate) and STAM (signal transducing adaptor molecule), both of which harbor multiple ubiquitin-binding domains (UBDs). In particular, STAM2 possesses two UBDs, the VHS (Vps27/Hrs/Stam) and UIM (ubiquitin interacting motif) domains, connected by a 20-amino acid flexible linker. In the present study, we report the interactions of the UIM domain and VHS-UIM construct of STAM2 with monoubiquitin (Ub), Lys(48)- and Lys(63)-linked diubiquitins. Our results demonstrate that the UIM domain alone binds monoubiquitin, Lys(48)- and Lys(63)-linked diubiquitins with the same affinity and in the same binding mode. Interestingly, binding of VHS-UIM to Lys(63)-linked diubiquitin is not only avid, but also cooperative. We also show that the distal domain of Lys(63)-linked diubiquitin stabilizes the helical structure of the UIM domain and that the corresponding complex adopts a specific structural organization responsible for its greater affinity. In contrast, binding of VHS-UIM to Lys(48)-linked diubiquitin and monoubiquitin is not cooperative and does not show any avidity. These results may explain the better sorting efficiency of some cargoes polyubiquitinated with Lys(63)-linked chains over monoubiquitinated cargoes or those tagged with Lys(48)-linked chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号