首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Escherichia coli proteome was digested with trypsin and fractionated using SPE on a C18 SPE column. Seven fractions were collected and analyzed by CZE‐ESI‐MS/MS. The separation was performed in a 60‐cm‐long linear polyacrylamide‐coated capillary with a 0.1% v/v formic acid separation buffer. An electrokinetic sheath‐flow electrospray interface was used to couple the separation capillary with an Orbitrap‐Velos operating in higher‐energy collisional dissociation mode. Each CZE‐ESI‐MS/MS run lasted 50 min and total MS time was 350 min. A total of 23 706 peptide spectra matches, 4902 peptide IDs, and 871 protein group IDs were generated using MASCOT with false discovery rate less than 1% on the peptide level. The total mass spectrometer analysis time was less than 6 h, the sample identification rate (145 proteins/h) was more than two times higher than previous studies of the E. coli proteome, and the amount of sample consumed (<1 μg) was roughly fourfold less than previous studies. These results demonstrate that CZE is a useful tool for the bottom‐up analysis of prokaryote proteomes.  相似文献   

2.
Protonated peptides derived from proline‐rich proteins (PRP) are often difficult to sequence by standard collision‐induced dissociation (CID) mass spectrometry (MS) due to preferential amide bond cleavage N‐terminal to proline. In connection with bovine spongiform encephalopathy regulations, proteolytic products derived from the PRP collagen have been suggested as markers for contamination of animal feedstuffs with processed animal protein (Fernandez Ocaña, M. et al., Analyst 2004, 129, 111–115). Herein, we report the identification of these marker peptides using the strategy of C‐terminal sequencing by CID MS from their sodium and lithium adducts. Upon fragmentation a new cationized peptide was produced that is one C‐terminal amino acid shorter in length. This dissociation pathway allowed for the facile identification of the C‐terminal residue by matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometry. Each newly formed cationized peptide was further fragmented by up to seven stages of electrospray ionization ion trap MS. Proline‐rich C‐terminal sequence tags were established which permitted successful database identification of collagen alpha type I proteins.  相似文献   

3.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

4.
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of ‘one‐bead‐one‐peptide’ combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4‐hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc‐Asp[2‐phenylisopropyl (OPp)]‐OH to Ala‐Gly‐oxymethylbenzamide‐ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N‐terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N‐Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one‐bead‐one‐cyclic depsipeptide libraries that can be easily open for its sequencing by matrix‐assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Quantitative proteomics based on MS is useful for pointing out the differences in some food proteomes relevant to human nutrition. Stable isotope label‐free (SIF) techniques are suitable for comparing an unlimited number of samples by the use of relatively simple experimental workflows. We have developed an internal standard label‐free method based on the intensities of peptide precursor ions from MS/MS spectra, collected in data dependent runs, for the simultaneous qualitative characterization and relative quantification of storage proteins of Lupinus albus seeds in protein extracts of four lupin cultivars (cv Adam, Arés, Lucky, Multitalia). The use of an innovative microfluidic system, the HPLC‐Chip, coupled with a classical IT mass spectrometer, has allowed a complete qualitative characterization of all proteins. In particular, the homology search mode has permitted to identify single amino acid substitutions in the sequences of vicilins (β‐conglutin precursor and vicilin‐like protein). The MS/MS sequencing of substituted peptides confirms the high heterogeneity of vicilins according to the peculiar characteristics of the vicilin‐encoding gene family. Two suitable bioinformatics parameters were optimized for the differential analyses of the main bioactive proteins: the “normalized protein average of common reproducible peptides” (N‐ACRP) for γ‐conglutin, which is a homogeneous protein, and the “normalized protein mean peptide spectral intensity” (N‐MEAN) for the highly heterogenous class of the vicilins.  相似文献   

6.
The bicyclic amines in the form of cryptands, the crown ether analogs, were used in the synthesis of cryptando‐peptidic conjugates with simultaneous formation of quaternary ammonium nitrogen moiety. A series of model cryptando‐peptidic conjugates at the peptide N‐terminus was efficiently prepared by the standard Fmoc solid phase synthesis. Tandem mass spectrometric analysis of the obtained conjugates has shown the specific fragmentation pattern during MS/MS experiment. The obtained cryptandic quaternary ammonium group undergoes the Hofmann elimination during collision‐induced dissociation fragmentation followed by the ethoxyl group elimination. The presented quaternization of cryptands by iodoacetylated peptides is relatively easy and compatible with standard solid‐phase peptide synthesis. Additionally, the applicability of such peptide derivatives and their isotopologues selectively deuterated at the α‐carbon in the quantitative LC‐MS analysis was analyzed. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Mass spectrometers equipped with matrix‐assisted laser desorption/ionization (MALDI‐MS) require frequent multipoint calibration to obtain good mass accuracy over a wide mass range and across large numbers of samples. In this study, we introduce a new synthetic peptide mass calibration standard termed PAS‐cal tailored for MALDI‐MS based bottom‐up proteomics. This standard consists of 30 peptides between 8 and 37 amino acids long and each constructed to contain repetitive sequences of Pro, Ala and Ser as well as one C‐terminal arginine residue. MALDI spectra thus cover a mass range between 750 and 3200 m/z in MS mode and between 100 and 3200 m/z in MS/MS mode. Our results show that multipoint calibration of MS spectra using PAS‐cal peptides compares well to current commercial reagents for protein identification by PMF. Calibration of tandem mass spectra from LC‐MALDI experiments using the longest peptide, PAS‐cal37, resulted in smaller fragment ion mass errors, more matching fragment ions and more protein and peptide identifications compared to commercial standards, making the PAS‐cal standard generically useful for bottom‐up proteomics.  相似文献   

8.
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Mass spectrometry (MS) analysis of peptides carrying post‐translational modifications is challenging due to the instability of some modifications during MS analysis. However, glycopeptides as well as acetylated, methylated and other modified peptides release specific fragment ions during CID (collision‐induced dissociation) and HCD (higher energy collisional dissociation) fragmentation. These fragment ions can be used to validate the presence of the PTM on the peptide. Here, we present PTM MarkerFinder, a software tool that takes advantage of such marker ions. PTM MarkerFinder screens the MS/MS spectra in the output of a database search (i.e., Mascot) for marker ions specific for selected PTMs. Moreover, it reports and annotates the HCD and the corresponding electron transfer dissociation (ETD) spectrum (when present), and summarizes information on the type, number, and ratios of marker ions found in the data set. In the present work, a sample containing enriched N‐acetylhexosamine (HexNAc) glycopeptides from yeast has been analyzed by liquid chromatography‐mass spectrometry on an LTQ Orbitrap Velos using both HCD and ETD fragmentation techniques. The identification result (Mascot .dat file) was submitted as input to PTM MarkerFinder and screened for HexNAc oxonium ions. The software output has been used for high‐throughput validation of the identification results.  相似文献   

10.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

11.
12.
A tryptic digest generated from Xenopus laevis fertilized embryos was fractionated by RPLC. One set of 30 fractions was analyzed by 100‐min CZE‐ESI‐MS/MS separations (50 h total instrument time), and a second set of 15 fractions was analyzed by 3‐h UPLC‐ESI‐MS/MS separations (45 h total instrument time). CZE‐MS/MS produced 70% as many protein IDs (4134 versus 5787) and 60% as many peptide IDs (22 535 versus 36 848) as UPLC‐MS/MS with similar instrument time (50 h versus 45 h) but with 50 times smaller total consumed sample amount (1.5 μg versus 75 μg). Surprisingly, CZE generated peaks that were 25% more intense than UPLC for peptides that were identified by both techniques, despite the 50‐fold lower loading amount; this high sensitivity reflects the efficient ionization produced by the electrokinetically pumped nanospray interface used in CZE. This report is the first comparison of CZE‐MS/MS and UPLC‐MS/MS for large‐scale eukaryotic proteomic analysis. The numbers of protein and peptide identifications produced by CZE‐ESI‐MS/MS approach those produced by UPLC‐MS/MS, but with nearly two orders of magnitude lower sample amounts.  相似文献   

13.
In this work, we report the development of a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@nSiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high‐surface areas of the microspheres were demonstrated to have good size‐exclusion effect for the adsorption of peptides. An increase of S/N ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using myoglobin tryptic digest solution. The enrichment efficiency of re‐used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large‐scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano‐LC‐ESI‐MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.  相似文献   

14.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   

15.
In tandem mass spectrometry (MS/MS), there are several different fragmentation techniques possible, including, collision‐induced dissociation (CID) higher energy collisional dissociation (HCD), electron‐capture dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs. In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method includes a CID and HCD spectra merging criterion and a parent mass correction step, along with improvements to our previously proposed algorithm for sequencing merged spectra. Three pairs of spectral datasets were used to investigate and compare the performance of the proposed method with other existing methods designed for single spectrum (HCD or CID) sequencing. Experimental results showed that full‐length peptide sequencing accuracy was increased significantly by using spectra pairs in the proposed method, with the highest accuracy reaching 81.31%.  相似文献   

16.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

17.
A novel peptide was isolated from the skin secretion of Chinese large odorous frog, Odorrana livida, and was named as Rana‐BI. The cDNA sequencing was obtained by ‘shotgun’ cloning. The amino acid sequence of the mature peptide was identified as Gly‐Leu‐Leu‐Ser‐Gly‐Lys‐Ser‐Val‐Lys‐Gly‐Ser‐Ile‐OH by automated Edman degradation, and the molecular weight of the peptide was confirmed to be 1144.68 Da by MALDI‐TOF and liquid chromatography/MS. Subsequently, the bioactivity of synthetic peptide was evaluated by smooth muscle assay using isolated rat bladder preparation. It was demonstrated that Rana‐BI inhibited the contraction of rat bladder induced by bradykinin. Comparing with other peptides by searching from database, the primary structure of Rana‐BI showed high similarity with that of an antimicrobial peptide of Rana family (12/12 residues). These data revealed a novel biological function of this peptide. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Protein termini play important roles in biological processes, but there have been few methods for comprehensive terminal proteomics. We have developed a new method that can identify both the amino and the carboxyl termini of proteins. The method independently uses two proteases, (lysyl endopeptidase) Lys-C and peptidyl-Lys metalloendopeptidase (Lys-N), to digest proteins, followed by LC-MS/MS analysis of the two digests. Terminal peptides can be identified by comparing the peptide masses in the two digests as follows: (i) the amino terminal peptide of a protein in Lys-C digest is one lysine residue mass heavier than that in Lys-N digest; (ii) the carboxyl terminal peptide in Lys-N digest is one lysine residue mass heavier than that in Lys-C digest; and (iii) all internal peptides give exactly the same molecular masses in both the Lys-C and the Lys-N digest, although amino acid sequences of Lys-C and Lys-N peptides are different (Lys-C peptides end with lysine, whereas Lys-N peptides begin with lysine). The identification of terminal peptides was further verified by examining their MS/MS spectra to avoid misidentifying pairs as termini. In this study, we investigated the usefulness of this method using several protein and peptide mixtures. Known protein termini were successfully identified. Acetylation on N-terminus and protein isoforms, which have different termini, was also determined. These results demonstrate that our new method can confidently identify terminal peptides in protein mixtures.  相似文献   

19.
MS was used to characterize the 24 kDa human growth hormone (hGH) glycoprotein isoform and determine the locus of O‐linked oligosaccharide attachment, the oligosaccharide branching topology, and the monosaccharide sequence. MALDI‐TOF/MS and ESI‐MS/MS analyses of glycosylated 24 kDa hGH tryptic peptides showed that this hGH isoform is a product of the hGH normal gene. Analysis of the glycoprotein hydrolysate by high‐performance anion‐exchange chromatography with pulsed amperometric detection and HPLC with fluorescent detection for N‐acetyl neuraminic acid (NeuAc) yielded the oligosaccharide composition (NeuAc2, N‐acetyl galactosamine1, Gal1). After β‐elimination to release the oligosaccharide from glycosylated 24 kDa hGH, collision‐induced dissociation of tryptic glycopeptide T6 indicated that there had been an O‐linked oligosaccharide attached to Thr‐60. The sequence and branching structure of the oligosaccharide were determined by ESI‐MS/MS analysis of tryptic glycopeptide T6. The mucin‐like O‐oligosaccharide sequence linked to Thr‐60 begins with N‐acetyl galactosamine and branches in a bifurcated topology with one appendage consisting of galactose followed by NeuAc and the other consisting of a single NeuAc. The oligosaccharide moiety lies in the high‐affinity binding site 1 structural epitope of hGH that interfaces with both the growth hormone and the prolactin receptors and is predicted to sterically affect receptor interactions and alter the biological actions of hGH.  相似文献   

20.
A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC‐MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four‐protein mixture, the same four‐protein mixture spiked into a complex biological background, and a variety of other “system” type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to a more conventional data directed approach using the same identification criteria, with a concurrent increase in both sequence coverage and the number of modified peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号