共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of oxygen on the per‐cell extracellular electron transfer rate of Shewanella oneidensis MR‐1 explored in bioelectrochemical systems 下载免费PDF全文
Mengqian Lu Shirley Chan Sofia Babanova Orianna Bretschger 《Biotechnology and bioengineering》2017,114(1):96-105
Extracellular electron transfer (EET) is a mechanism that enables microbes to respire solid‐phase electron acceptors. These EET reactions most often occur in the absence of oxygen, since oxygen can act as a competitive electron acceptor for many facultative microbes. However, for Shewanella oneidensis MR‐1, oxygen may increase biomass development, which could result in an overall increase in EET activity. Here, we studied the effect of oxygen on S. oneidensis MR‐1 EET rates using bioelectrochemical systems (BESs). We utilized optically accessible BESs to monitor real‐time biomass growth, and studied the per‐cell EET rate as a function of oxygen and riboflavin concentrations in BESs of different design and operational conditions. Our results show that oxygen exposure promotes biomass development on the electrode, but significantly impairs per‐cell EET rates even though current production does not always decrease with oxygen exposure. Additionally, our results indicated that oxygen can affect the role of riboflavin in EET. Under anaerobic conditions, both current density and per‐cell EET rate increase with the riboflavin concentration. However, as the dissolved oxygen (DO) value increased to 0.42 mg/L, riboflavin showed very limited enhancement on per‐cell EET rate and current generation. Since it is known that oxygen can promote flavins secretion in S. oneidensis, the role of riboflavin may change under anaerobic and aerobic conditions. Biotechnol. Bioeng. 2017;114: 96–105. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. 相似文献
2.
3.
The microbial communities associated with electrodes in closed and open circuit microbial fuel cells (MFCs) fed with glucose were analyzed by 16S rRNA approach and compared. The comparison revealed that bacteria affiliated with the Aeromonas sp. within the Gammaproteobacteria constituted the major population in the closed circuit MFC (harvesting electricity) and considered to play important roles in current generation. We, therefore, attempted to isolate the dominant bacteria from the anode biofilm, successfully isolated a Fe (III)‐reducing bacterium phylogenetically related to Aeromonas sp. and designated as strain ISO2‐3. The isolated strain ISO2‐3 could grow and concomitantly produce current (max. 0.24 A/m2) via oxidation of glucose or hydrogen with an electrode serving as the sole electron acceptor. The strain could ferment glucose, but generate less electrical current. Cyclic voltammetry supported the strain ISO2‐3 was electrically active and likely to transfer electrons to the electrode though membrane‐associated compounds (most likely c‐type cytochrome). This mechanism requires intimate contact with the anode surface. Scanning electron microscopy revealed that the strain ISO2‐3 developed multiplayer biofilms on the anode surface and also produced anchor‐like filamentous appendages (most likely pili) that may promote long‐range electron transport across the thick biofilm. Biotechnol. Bioeng. 2009; 104: 901–910. © 2009 Wiley Periodicals, Inc. 相似文献
4.
5.
6.
7.
8.
We have been engaged in the microwave‐solid phase peptide synthesis (SPPS) synthesis of the phenylglycine (Phg)‐containing pentapeptide H‐Ala‐Val‐Pro‐Phg‐Tyr‐NH2 (1) previously demonstrated to bind to the so‐called BIR3 domain of the anti‐apoptotic protein XIAP. Analysis of the target peptide by a combination of RP‐HPLC, ESI‐MS, and NMR revealed the presence of two diastereoisomers arising out of the racemisation of the Phg residue, with the percentage of the LLLDL component assessed as 49%. We performed the synthesis of peptide (1) using different microwave and conventional stepwise SPPS conditions in attempts to reduce the level of racemisation of the Phg residue and to determine at which part of the synthetic cycle the epimerization had occurred. We determined that racemisation occurred mainly during the Fmoc‐group removal and, to a much lesser extent, during activation/coupling of the Fmoc‐Phg‐OH residue. We were able to obtain the desired peptide with a 71% diastereomeric purity (29% LLLDL as impurity) by utilizing microwave‐assisted SPPS at 50 °C and power 22 Watts, when the triazine‐derived coupling reagent DMTMM‐BF4 was used, together with NMM as an activator base, for the incorporation of this residue and 20% piperidine as an Fmoc‐deprotection base. In contrast, the phenylalanine analogue of the above peptide, H‐Ala‐Val‐Pro‐Phe‐Tyr‐NH2 (2), was always obtained as a single diastereoisomer by using a range of standard coupling and deprotection conditions. Our findings suggest that the racemisation of Fmoc‐Phg‐OH, under both microwave‐SPPS and stepwise conventional SPPS syntheses conditions, is very facile but can be limited through the use of the above stated conditions. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
9.
20‐O‐β‐d‐Glucopyranosyl‐20(S)‐Protopanaxadiol Suppresses UV‐Induced MMP‐1 Expression Through AMPK‐Mediated mTOR Inhibition as a Downstream of the PKA‐LKB1 Pathway 下载免费PDF全文
Dong Joo Shin Jong‐Eun Kim Tae‐Gyu Lim Eun Hee Jeong Gaeun Park Nam Joo Kang Jun‐Seong Park Myeong‐Hun Yeom Deok Kun Oh Ann M. Bode Zigang Dong Hyong Joo Lee Ki Won Lee 《Journal of cellular biochemistry》2014,115(10):1702-1711
10.
Thomas Eixelsberger John M. Woodley Bernd Nidetzky Regina Kratzer 《Biotechnology and bioengineering》2013,110(8):2311-2315
Escherichia coli cells co‐expressing genes coding for Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase were used for the bioreduction of o‐chloroacetophenone with in situ coenzyme recycling. The product, (S)‐1‐(2‐chlorophenyl)ethanol, is a key chiral intermediate in the synthesis of polo‐like kinase 1 inhibitors, a new class of chemotherapeutic drugs. Production of the alcohol in multi‐gram scale requires intensification and scale‐up of the biocatalyst production, biotransformation, and downstream processing. Cell cultivation in a 6.9‐L bioreactor led to a more than tenfold increase in cell concentration compared to shaken flask cultivation. The resultant cells were used in conversions of 300 mM substrate to (S)‐1‐(2‐chlorophenyl)ethanol (e.e. >99.9%) in high yield (96%). Results obtained in a reaction volume of 500 mL were identical to biotransformations carried out in 1 mL (analytical) and 15 mL (preparative) scale. Optimization of product isolation based on hexane extraction yielded 86% isolated product. Biotransformation and extraction were accomplished in a stirred tank reactor equipped with pH and temperature control. The developed process lowered production costs by 80% and enabled (S)‐1‐(2‐chlorophenyl)ethanol production within previously defined economic boundaries. A simple and efficient way to synthesize (S)‐1‐(2‐chlorophenyl)ethanol in an isolated amount of 20 g product per reaction batch was demonstrated. Biotechnol. Bioeng. 2013; 110: 2311–2315. © 2013 Wiley Periodicals, Inc. 相似文献
11.
12.
D‐AKAP2:PKA RII:PDZK1 ternary complex structure: Insights from the nucleation of a polyvalent scaffold 下载免费PDF全文
Ronit Ilouz Ryan H. Phan Banumathi Sankaran Randy A. Hall Susan S. Taylor 《Protein science : a publication of the Protein Society》2015,24(1):105-116
A‐kinase anchoring proteins (AKAPs) regulate cAMP‐dependent protein kinase (PKA) signaling in space and time. Dual‐specific AKAP2 (D‐AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D‐AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α‐helix to PKA and a β‐strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D‐AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D‐AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C‐terminus of D‐AKAP2, which contains two binding motifs—the D‐AKAP2AKB and the PDZ motif—that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D‐AKAP2AKB binds to the D/D domain of the R‐subunit and the C‐terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D‐AKAP2 would exhibit a differential mode of binding to the two PKA isoforms. 相似文献
13.
14.
Viatcheslav N. Azev Leila G. Mustaeva Elena Yu. Gorbunova Maksim V. Molchanov Igor L. Rodionov 《Journal of peptide science》2013,19(10):607-612
(NIn)‐Formyl protective group of tryptophan has been introduced as a base/nucleophile‐labile protective group. It has long been known that a free Nα‐amino group of the peptide can serve as a nucleophile: an irreversible formyl NIn → NH2 transfer is consistently observed when deformylation is performed last on an otherwise deprotected peptide that possesses free Nα‐amino group. Obviously, this particular side reaction should be expected any time free amino group is exposed to Trp(For), but, at the best of our knowledge, has never been reported in the course of Boc‐SPPS. In the present communication, we describe a set of appropriately designed model experiments that permitted to detect the title side reaction both in solution and in solid‐phase reactions. We observed intermolecular formyl group transfer with a model compound, Trp(For)‐NH2. Importantly, we also observed this migration on solid support with the rate roughly estimated to be up to 1% of residues per minute. We also observed that the formyl‐group transfer reaction occurred in a sequence‐dependent manner and was suppressed to a non‐detectable level using ‘in situ neutralization’ technique. Because this side reaction is sequence dependent, there might be situations when the rate of the formation of Nα‐formyl termination by‐products is significant. In other cases, the Nα‐For truncated by‐products would not contaminate the final peptide significantly but still could be a source of microheterogeneity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
15.
16.
Cristina Chiva Marta Vilaseca Ernest Giralt Fernando Albericio 《Journal of peptide science》1999,5(3):131-140
DKP formation is a serious side reaction during the solid‐phase synthesis of peptide acids containing either Pro or Gly at the C‐terminus. This side reaction not only leads to a lower overall yield, but also to the presence in the reaction crude of several deletion peptides lacking the first amino acids. For the preparation of protected peptides using the Fmoc/tBu strategy, the use of a ClTrt‐Cl‐resin with a limited incorporation of the C‐terminal amino acid is the method of choice. The use of resins with higher loading levels leads to more impure peptide crudes. The use of HPLC‐ESMS is a useful method for analysing complex samples, such as those formed when C‐terminal Pro peptides are prepared by non‐optimized solid‐phase strategies. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
17.
Peng Geng Ting Sun Qiping Zhong Xiaoxia Li Liying Shi Fang Bai Gang Bai 《化学与生物多样性》2013,10(3):452-459
Two novel aminooligosaccharides were separated from the culture filtrate of Streptomyces coelicoflavus ZG0656. Their chemical structures were determined by acidic hydrolysis, electrospray‐ionization tandem mass spectrometry (ESI‐MS/MS), and NMR spectroscopy. The compounds were named acarviostatins III0(?1) and III23 according to the nomenclature of this group of metabolites. The two novel acarviostatins were both mixed noncompetitive inhibitors of porcine pancreatic α‐amylase (PPA). The inhibition constants (Ki) for acarviostatins III0(?1) and III23 were 0.009 and 0.026 μM , respectively, 151 and 52 times more potent than acarbose. 相似文献
18.
19.
In cyanobacteria, Glu-244 and Tyr-246 of the Photosystem II (PS II) D1 protein are hydrogen bonded to two water molecules that are part of a hydrogen-bond network between the bicarbonate ligand to a non-heme iron and the cytosol. Ala substitutions were introduced in Synechocystis sp. PCC 6803 to investigate the roles of these residues and the hydrogen-bond network on electron transfer between the primary plastoquinone acceptor, QA, and the secondary plastoquinone acceptor, QB, of the quinone-Fe-acceptor complex. All mutants assembled PS II; however, an increase in the PS II to PS I ratio was apparent, particularly in the E244A:Y246A double mutant. The mutants also showed impaired oxygen evolution and retarded chlorophyll a fluorescence decays following single turnover actinic flashes, which appeared to be primarily due to reduced QB binding in the E244A strain and an enhanced back reaction with the S2 state of the oxygen-evolving complex in the Y246A mutant. Impaired PS II in the Y246A and E244A:Y246A mutants resulted in inactivation of the psbA gene encoding D1. The Y246A and E244A:Y246A mutants also showed high light sensitivity whereas the E244A mutant showed enhanced resilience towards photodamage. Unlike the control strain, all of the mutants were insensitive to the addition of formate or bicarbonate in assays following chlorophyll decay kinetics that reflect electron transfer between QA and QB, suggesting the bicarbonate binding environment was perturbed. Our data also indicate that waters W582 and W622 (PDB: 4UB6) have essential roles in maintaining the architecture of the acceptor side of PS II. 相似文献
20.
The key step of the "protonmotive Q-cycle" mechanism for cytochrome bc1 complex is the bifurcated oxidation of ubiquinol at the Qp site. ISP is reduced when its head domain is at the b-position and subsequent move to the c1 position, to reduce cytochrome c1, upon protein conformational changes caused by the electron transfer from cytochrome b(L) to b(H). Results of analyses of the inhibitory efficacy and the binding affinity, determined by isothermal titration calorimetry, of Pm and Pf, on different redox states of cytochrome bc1 complexes, confirm this speculation. Pm inhibitor has a higher affinity and better efficacy with the cytochrome b(H) reduced complex and Pf binds better and has a higher efficacy with the ISP reduced complex. 相似文献