首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysregulated protein phosphorylation is a primary culprit in multiple physiopathological states. Hence, although analysis of signaling cascades on a proteome-wide scale would provide significant insight into both normal and aberrant cellular function, such studies are simultaneously limited by sheer biological complexity and concentration dynamic range. In principle, immobilized metal affinity chromatography (IMAC) represents an ideal enrichment method for phosphoproteomics. However, anecdotal evidence suggests that this technique is not widely and successfully applied beyond analysis of simple standards, gel bands, and targeted protein immunoprecipitations. Here, we report significant improvements in IMAC-based methodology for enrichment of phosphopeptides from complex biological mixtures. Moreover, we provide detailed explanation for key variables that in our hands most influenced the outcome of these experiments. Our results indicate 5- to 10-fold improvement in recovery of singly- and multiply phosphorylated peptide standards in addition to significant improvement in the number of high-confidence phosphopeptide sequence assignments from global analysis of cellular lysate. In addition, we quantitatively track phosphopeptide recovery as a function of phosphorylation state, and provide guidance for impedance-matching IMAC column capacity with anticipated phosphopeptide content of complex mixtures. Finally, we demonstrate that our improved methodology provides for identification of phosphopeptide distributions that closely mimic physiological conditions.  相似文献   

2.
Phosphopeptide detection using automated online IMAC-capillary LC-ESI-MS/MS   总被引:1,自引:0,他引:1  
Wang J  Zhang Y  Jiang H  Cai Y  Qian X 《Proteomics》2006,6(2):404-411
IMAC has become a commonly used technique in phosphoprotein analysis because of its affinity for phosphopeptides. However, the commonly used strategy combining offline IMAC enrichment with desalting procedures prior to MS/MS makes this method laborious. Here we report the development of a robust and automatic IMAC-capillary RP HPLC-ESI MS/MS technology platform, by which all procedures needed in phosphopeptide analysis including IMAC enrichment, RP HPLC separation and nanospray MS/MS can be done automatically controlled by the MassLynx program. The platform was optimized by analyzing standard phosphopeptide, and was then applied to the identification of phosphorylation sites of recombinant human telomeric repeat binding factor 1 treated with kinase in vitro, and two phosphorylation sites are defined.  相似文献   

3.
Immobilized metal affinity chromatography (IMAC) and metal oxide type affinity chromatography (MOAC) techniques have been widely used for mass spectrometry-based phosphorylation analysis. Unlike MOAC techniques, IMAC requires rather complete removals of buffering reagents, salts and high concentrations of denaturant prior to sample loading in order for the successful enrichment of phosphopeptides. In this study, a simple off-line capillary column-based IMAC phosphopeptide enrichment method can shorten sample preparation time by eliminating the speed-vac step from the desalting process. Tryptic digest peptide samples containing 2M urea can be directly processed and the entire IMAC procedure can be completed within 6 h. When tryptic digest peptide samples prepared from mouse whole brain tissues were analyzed using our method, an average of 249 phosphoproteins and 463 unique phosphopeptides were identified from single 2-h RPLC-MS/MS analysis (~88% specificity). An additional advantage of this method is the significantly improved reproducibility of the phosphopeptide enrichment results. When four independent phosphopeptide enrichment experiments were carried out, the peak areas of phosphopeptides identified among four enrichment experiments were relatively similar (less than 16.2% relative standard dev.). Because of this increased reproducibility, relative phosphorylation quantification analysis of major phosphoproteins appears to be feasible without the need for stable isotope labeling techniques.  相似文献   

4.
Immobilized metal affinity chromatography (IMAC) based on Fe (3+) or Ga (3+) chelation is the most widely employed technique for the enrichment of phosphopeptides from biological samples prior to mass spectrometric analysis. An IMAC resin geared mainly toward phosphoprotein enrichment, Pro-Q Diamond, has been assessed for its utility in phosphopeptide isolation. Using both single phosphoprotein tryptic digests of beta-casein and ovalbumin and synthetic mixtures composed of tryptic digests of phosphorylated and nonphosphorylated protein standards, the selectivity and sensitivity of Pro-Q Diamond resin in an immobilized metal affinity-reversed phase microcolumn format were compared to an alternate titanium dioxide approach. The biphasic microcolumn method was found to be superior to metal oxide-based phosphopeptide capture in biological samples of increasing complexity. The lower limit of mass spectrometric detection for the immobilized metal affinity-reversed phase microcolumn approach was determined to be 10 pmol of beta-casein monophosphorylated peptide in 20 muL of a solution of human serum protein digest (from 200 mug total serum protein after digestion and desalting).  相似文献   

5.
Worthington J  Cutillas PR  Timms JF 《Proteomics》2011,11(23):4583-4587
Protein regulation by reversible phosphorylation is fundamental in nature, and large-scale phosphoproteomic analyses are becoming routine in proteomics laboratories. These analyses utilise phosphopeptide separation and enrichment techniques linked to LC-MS/MS. Herein, we report that IMAC and TiO(2) also enrich for non-phosphorylated modified peptides such as acetylated, deamidated and carbamylated peptides. Urea and digestion conditions commonly used in phosphoproteomic workflows are the likely sources of the induced modifications (deamidation and carbamylation) and can easily modify phosphopeptides. Including these variable modifications in database searches increased the total number of identified phosphopeptides by 15%. We also show that strong cation exchange fractionation provides poor resolution of phosphopeptides and actually enriches these alternatively modified peptides. By switching to reverse-phase chromatography, we show a significant improvement in the number of identified phosphopeptides. We recommend that the users of phosphopeptide enrichment strategies avoid using urea as a denaturant and that careful consideration is given to chromatographic conditions and the types of variable modifications used in database searches. Thus, the capacity of IMAC and TiO(2) to enrich phosphopeptides bearing modifications other than phosphorylation is a previously unappreciated property of these chromatographies with practical implications for the field of phosphoproteomics.  相似文献   

6.
Recent advances in instrument control and enrichment procedures have enabled us to quantify large numbers of phosphoproteins and record site-specific phosphorylation events. An intriguing problem that has arisen with these advances is to accurately validate where phosphorylation events occur, if possible, in an automated manner. The problem is difficult because MS/MS spectra of phosphopeptides are generally more complicated than those of unmodified peptides. For large scale studies, the problem is even more evident because phosphorylation sites are based on single peptide identifications in contrast to protein identifications where at least two peptides from the same protein are required for identification. To address this problem we have developed an integrated strategy that increases the reliability and ease for phosphopeptide validation. We have developed an off-line titanium dioxide (TiO(2)) selective phosphopeptide enrichment procedure for crude cell lysates. Following enrichment, half of the phosphopeptide fractionated sample is enzymatically dephosphorylated, after which both samples are subjected to LC-MS/MS. From the resulting MS/MS analyses, the dephosphorylated peptide is used as a reference spectrum against the original phosphopeptide spectrum, in effect generating two peptide spectra for the same amino acid sequence, thereby enhancing the probability of a correct identification. The integrated procedure is summarized as follows: 1) enrichment for phosphopeptides by TiO(2) chromatography, 2) dephosphorylation of half the sample, 3) LC-MS/MS-based analysis of phosphopeptides and corresponding dephosphorylated peptides, 4) comparison of peptide elution profiles before and after dephosphorylation to confirm phosphorylation, and 5) comparison of MS/MS spectra before and after dephosphorylation to validate the phosphopeptide and its phosphorylation site. This phosphopeptide identification represents a major improvement as compared with identifications based only on single MS/MS spectra and probability-based database searches. We investigated an applicability of this method to crude cell lysates and demonstrate its application on the large scale analysis of phosphorylation sites in differentiating mouse myoblast cells.  相似文献   

7.
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource Facilities (ABRF) were detected and verified by means of the 80 Da mass shift achieved by on-column dephosphorylation.  相似文献   

8.
Wu HT  Hsu CC  Tsai CF  Lin PC  Lin CC  Chen YJ 《Proteomics》2011,11(13):2639-2653
Magnetic nanoparticles (MNP, <100 nm) have rapidly evolved as sensitive affinity probes for phosphopeptide enrichment. By taking advantage of the easy magnetic separation and flexible surface modification of the MNP, we developed a surface‐blocked, nanoprobe‐based immobilized metal ion affinity chromatography (NB‐IMAC) method for the enhanced purification of multiply phosphorylated peptides. The NB‐IMAC method allowed rapid and specific one‐step enrichment by blocking the surface of titanium (IV) ion‐charged nitrilotriacetic acid‐conjugated MNP (Ti4+‐NTA‐PEG@MNP) with low molecular weight polyethylene glycol. The MNP demonstrated highly sensitive and unbiased extraction of both mono‐ and multiply phosphorylated peptides from diluted β‐casein (2×10?10 M). Without chemical derivation or fractionation, 1283 phosphopeptides were identified from 400 μg of Raji B cells with 80% purification specificity. We also showed the first systematic comparison on the particle size effect between nano‐sclae IMAC and micro‐scale IMAC. Inductively coupled plasma‐mass spectrometry (ICP‐MS) analysis revealed that MNP had a 4.6‐fold higher capacity for metal ions per unit weight than did the magnetic micro‐sized particle (MMP, 2–10 μm), resulting in the identification of more phosphopeptides as well as a higher percentage of multiply phosphorylated peptides (31%) at the proteome scale. Furthermore, NB‐IMAC complements chromatography‐based IMAC and TiO2 methods because <13% of mono‐ and 12% of multiply phosphorylated peptide identifications overlapped among the 2700 phosphopeptides identified by the three methods. Notably, the number of multiply phosphorylated peptides was enriched twofold and threefold by NB‐IMAC relative to micro‐scale IMAC and TiO2, respectively. NB‐IMAC is an innovative material for increasing the identification coverage in phosphoproteomics.  相似文献   

9.
Immobilized-metal-ion affinity chromatography (IMAC) is used extensively for phosphopeptide enrichment in phosphoproteomics. However, the effect of nucleic acids in protein samples on phosphopeptide enrichment by IMAC has not yet been well clarified. In this study, we demonstrate that IMAC beads possess a strong adsorption of nucleic acids, especially single-stranded or single-stranded-region-containing nucleic acids, leading to approximately 50% loss of phosphopeptides during the process of IMAC enrichment. Therefore, nucleic acids must be removed from protein samples prior to IMAC. Acetonitrile (ACN) precipitation, a simple and efficient procedure, was established to remove nucleic acids from the protein samples. We showed that ACN precipitation approximately doubled the phosphopeptide number identified by IMAC and mass spectrometry, indicating that nucleic acid removal significantly improves the identification of phosphopeptides. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Haizhu Lin  Chunhui Deng 《Proteomics》2016,16(21):2733-2741
In this work, we first immobilized tin(IV) ion on polydopamine‐coated magnetic graphene (magG@PDA) to synthesize Sn4+‐immobilized magG@PDA (magG@PDA‐Sn4+) and successfully applied the material to highly selective enrichment of phosphopeptides. The material gathered the advantages of large surface area of graphene, superparamagnetism of Fe3O4, good hydrophilicity and biocompatibility of polydopamine, and strong interaction between Sn4+ and phosphopeptides. The enrichment performance of magG@PDA‐Sn4+ toward phosphopeptides from digested β‐casein at different concentrations, with and without added digested BSA was investigated and compared with magG@PDA‐Ti4+. The results showed high selectivity and sensitivity of the Sn4+‐IMAC material toward phosphopeptides, as good as the Ti4+‐IMAC material. Finally, magG@PDA‐Sn4+ was applied to the analysis of endogenous phosphopeptides from a real sample, human saliva, with both MALDI‐TOF MS and nano‐LC‐ESI‐MS/MS. The results indicated that the as‐synthesized Sn4+‐IMAC material not only has good enrichment performance, but also could serve as a supplement to the Ti4+‐IMAC material and expand the phosphopeptide coverage enriched by the single Ti4+‐IMAC material, demonstrating the broad application prospects of magG@PDA‐Sn4+ in phosphoproteome research.  相似文献   

11.
Protein phosphorylation is among the most common and intensely studied post-translational protein modification. It plays crucial roles in virtually all cellular processes and has been implicated in numerous human diseases, including cancer. Traditional biochemical and genetic methods for identifying and monitoring sites of phosphorylation are laborious and slow and in recent years have largely been replaced by mass spectrometric analysis. Improved methods for phosphopeptide enrichment coupled with faster and more sensitive mass spectrometers have led to an explosion in the size of phosphoproteomic datasets. However, wider application of these methods is limited by equipment costs and the resultant high demand for instrument time as well as by a technology gap between biologists and mass spectrometrists. Here we describe a modified two-step enrichment strategy that employs lysC digestion and step elution from self-packed strong cation exchange (SCX) solid phase extraction (SPE) columns followed by immobilized metal ion affinity chromatography (IMAC) and LC–MS/MS analysis using a hybrid LTQ Orbitrap Velos mass spectrometer. The SCX procedure does not require an HPLC system, demands little expertise, and because multiple samples can be processed in parallel, can provide a large savings of time and labor. We demonstrate this method in conjunction with stable isotope labeling to quantitate peptides harboring >8000 unique phosphorylation sites in yeast in 12 h of instrument analysis time and examine the impact of enzyme choice and instrument platform.  相似文献   

12.
Recent advances in MS instrumentation and progresses in phosphopeptide enrichment, in conjunction with more powerful data analysis tools, have facilitated unbiased characterization of thousands of site‐specific phosphorylation events. Combined with stable isotope labeling by amino acids in cell culture metabolic labeling, these techniques have made it possible to quantitatively evaluate phosphorylation changes in various physiological states in stable cell lines. However, quantitative phosphoproteomics in primary cells and tissues remains a major technical challenge due to the lack of adequate techniques for accurate quantification. Here, we describe an integrated strategy allowing for large scale quantitative profiling of phosphopeptides in complex biological mixtures. In this technique, the mixture of proteolytic peptides was subjected to phosphopeptide enrichment using a titania affinity column, and the purified phosphopeptides were subsequently labeled with iTRAQ reagents. After further fractionation by strong‐cation exchange, the peptides were analyzed by LC‐MS/MS on an Orbitrap mass spectrometer, which collects CID and high‐energy collisional dissociation (HCD) spectra sequentially for peptide identification and quantitation. We demonstrate that direct phosphopeptide enrichment of protein digests by titania affinity chromatography substantially improves the efficiency and reproducibility of phosphopeptide proteomic analysis and is compatible with downstream iTRAQ labeling. Conditions were optimized for HCD normalized collision energy to balance the overall peptide identification and quantitation using the relative abundances of iTRAQ reporter ions. Using this approach, we were able to identify 3557 distinct phosphopeptides from HeLa cell lysates, of which 2709 were also quantified from HCD scans.  相似文献   

13.
Accurate determination of protein phosphorylation is challenging, particularly for researchers who lack access to a high-accuracy mass spectrometer. In this study, multiple protocols were used to enrich phosphopeptides, and a rigorous filtering workflow was used to analyze the resulting samples. Phosphopeptides were enriched from cultured rat renal proximal tubule cells using three commonly used protocols and a dual method that combines separate immobilized metal affinity chromatography (IMAC) and titanium dioxide (TiO2) chromatography, termed dual IMAC (DIMAC). Phosphopeptides from all four enrichment strategies were analyzed by liquid chromatography-multiple levels of mass spectrometry (LC-MSn) neutral-loss scanning using a linear ion trap mass spectrometer. Initially, the resulting MS2 and MS3 spectra were analyzed using PeptideProphet and database search engine thresholds that produced a false discovery rate (FDR) of <1.5% when searched against a reverse database. However, only 40% of the potential phosphopeptides were confirmed by manual validation. The combined analyses yielded 110 confidently identified phosphopeptides. Using less-stringent initial filtering thresholds (FDR of 7–9%), followed by rigorous manual validation, 262 unique phosphopeptides, including 111 novel phosphorylation sites, were identified confidently. Thus, traditional methods of data filtering within widely accepted FDRs were inadequate for the analysis of low-resolution phosphopeptide spectra. However, the combination of a streamlined front-end enrichment strategy and rigorous manual spectral validation allowed for confident phosphopeptide identifications from a complex sample using a low-resolution ion trap mass spectrometer.  相似文献   

14.
Linker histone H1 is highly phosphorylated in normal growing Tetrahymena thermophila but becomes noticeably dephosphorylated in response to certain conditions such as prolonged starvation. Because phosphorylation of H1 has been associated with the regulation of gene expression, DNA repair, and other critical processes, we sought to use mass spectrometry-based approaches to obtain an in depth phosphorylation "signature" for this linker histone. Histone H1 from both growing and starved Tetrahymena was analyzed by nanoflow reversed-phase HPLC MS/MS following enzymatic digestions, propionic anhydride derivatization, and phosphopeptide enrichment via IMAC. We confirmed five phosphorylation sites identified previously and detected two novel sites of phosphorylation and two novel minor sites of acetylation. The sequential order of phosphorylation on H1 was deduced by using mass spectrometry to define the modified sites on phosphorylated H1 isoforms separated by cation-exchange chromatography. Relative levels of site-specific phosphorylation on H1 isolated from growing and starved Tetrahymena were obtained using a combination of stable isotopic labeling, IMAC, and tandem mass spectrometry.  相似文献   

15.
The study of protein phosphorylation has grown exponentially in recent years, as it became evident that important cellular functions are regulated by phosphorylation and dephosphorylation of proteins on serine, threonine and tyrosine residues. The use of immobilized metal affinity chromatography (IMAC) to enrich phosphopeptides from peptide mixtures has been shown to be useful especially prior to mass spectrometric analysis. For the selective enrichment applying solid-phase extraction (SPE) of phosphorylated peptides, we introduce poly(glycidyl methacrylate/divinylbenzene) (GMD) derivatized with imino-diacetic acid (IDA) and bound Fe(III) as a material. GMD is rapidly synthesized and the resulting free epoxy groups enable an easy access to further derivatization with, e.g., IDA. Electron microscopy showed that the synthesized GMD-IDA-Fe(III) for SPE has irregular agglomerates of spherical particles. Inductively coupled plasma (ICP) analysis resulted in a metal capacity of Fe(III) being 25.4 micromol/mL. To enable on-line preconcentration and desalting in one single step, GMD-IDA-Fe(III) and Silica C18 were united in one cartridge. Methyl esterification (ME) of free carboxyl groups was carried out to prevent binding of nonphosphorylated peptides to the IMAC function. The recovery for a standard phosphopeptide using this SPE method was determined to be 92%. The suitability of the established system for the selective enrichment and analysis of model proteins phosphorylated at different amino acid residues was evaluated stepwise. After successful enrichment of beta-casein deriving phosphopeptides, the established system was extended to the analysis of in vitro phosphorylated proteins, e.g. deriving from glutathione-S-transferase tagged extracellular signal regulated kinase 2 (GST-ERK2).  相似文献   

16.
The characteristic tadpole shape of sperm is formed from round spermatids via spermiogenesis, a process which results in dramatic morphological changes in the final stage of spermatogenesis in the testis. Protein phosphorylation, as one of the most important post‐translational modifications, can regulate spermiogenesis; however, the phosphorylation events taking place during this process have not been systematically analyzed. In order to better understand the role of phosphorylation in spermiogenesis, large‐scale phosphoproteome profiling is performed using IMAC and TiO2 enrichment. In total, 13 835 phosphorylation sites, in 4196 phosphoproteins, are identified in purified mouse spermatids undergoing spermiogenesis in two biological replicates. Overall, 735 testis‐specific proteins are identified to be phosphorylated, and are expressed at high levels during spermiogenesis. Gene ontology analysis shows enrichment of the identified phosphoproteins in terms of histone modification, cilium organization, centrosome and the adherens junction. Further characterization of the kinase‐substrate phosphorylation network demonstrates enrichment of phosphorylation substrates related to the regulation of spermiogenesis. This global protein phosphorylation landscape of spermiogenesis shows wide phosphoregulation across a diverse range of processes during spermiogenesis and can help to further characterize the process of sperm generation. All MS data are available via ProteomeXchange with the identifier PXD011890.  相似文献   

17.
Large scale quantitative phosphoproteomics depends upon multidimensional strategies for peptide fractionation, phosphopeptide enrichment, and mass spectrometric analysis. Previously, most robust comprehensive large-scale phosphoproteomics strategies have relied on milligram amounts of protein. We have set up a multi-dimensional phosphoproteomics strategy combining a number of well-established enrichment and fraction methods: An initial TiO(2) phosphopeptide pre-enrichment step is followed by post-fractionation using sequential elution from IMAC (SIMAC) to separate multi- and mono-phosphorylated peptides, and hydrophilic interaction liquid chromatography (HILIC) of the mono-phosphorylated peptides (collectively abbreviated "TiSH"). The advantages of the strategy include a high specificity and sample preparation workload reduction due to the TiO(2) pre-enrichment step, as well as low adsorptive losses. We demonstrate the capability of this strategy by quantitative investigation of early interferon-γ signaling in low quantities of insulinoma cells. We identified ~6600 unique phosphopeptides from 300μg of peptides/condition (22 unique phosphopeptides/μg) in a duplex dimethyl labeling experiment, with an enrichment specificity>94%. When doing network analysis of putative phosphorylation changes it could be noted that the identified protein interaction network centered upon proteins known to be affected by the interferon-γ pathway, thereby supporting the utility of this global phosphoproteomics strategy. This strategy thus shows great potential for interrogating signaling networks from low amounts of sample with high sensitivity and specificity.  相似文献   

18.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

19.
To further improve the selectivity and throughput of phosphopeptide analysis for the samples from real-time cell lysates, here we demonstrate a highly efficient method for phosphopeptide enrichment via newly synthesized magnetite microparticles and the concurrent mass spectrometric analysis. The magnetite microparticles show excellent magnetic responsivity and redispersibility for a quick enrichment of those phosphopeptides in solution. The selectivity and sensitivity of magnetite microparticles in phosphopeptide enrichment are first evaluated by a known mixture containing both phosphorylated and nonphosphorylated proteins. Compared with the titanium dioxide-coated magnetic beads commercially available, our magnetite microparticles show a better specificity toward phosphopeptides. The selectively-enriched phosphopeptides from tryptic digests of β-casein can be detected down to 0.4 fmol μl−1, whereas the recovery efficiency is approximately 90% for monophosphopeptides. This magnetite microparticle-based affinity technology with optimized enrichment conditions is then immediately applied to identify all possible phosphorylation sites on a signal protein isolated in real time from a stress-stimulated mammalian cell culture. A large fraction of peptides eluted from the magnetic particle enrichment step were identified and characterized as either single- or multiphosphorylated species by tandem mass spectrometry. With their high efficiency and utility for phosphopeptide enrichment, the magnetite microparticles hold great potential in the phosphoproteomic studies on real-time samples from cell lysates.  相似文献   

20.
Phosphoproteome analysis of fission yeast   总被引:2,自引:0,他引:2  
Phosphorylation is a key regulator of many events in eukaryotic cells. The acquisition of large-scale phosphorylation data sets from model organisms can pinpoint conserved regulatory inputs and reveal kinase-substrate relationships. Here, we provide the first large-scale phosphorylation analysis of the fission yeast, Schizosaccharomyces pombe. Protein from thiabendazole-treated cells was separated by preparative SDS-PAGE and digested with trypsin. The resulting peptides were subjected to either IMAC or TiO2 phosphopeptide enrichment methods and then analyzed by LC-MS/MS using an LTQ-Orbitrap mass spectrometer. In total, 2887 distinct phosphorylation sites were identified from 1194 proteins with an estimated false-discovery rate of <0.5% at the peptide level. A comparison of the two different enrichment methods is presented, supporting the finding that they are complementary. Finally, phosphorylation sites were examined for phosphorylation-specific motifs and evolutionary conservation. These analyses revealed both motifs and specific phosphorylation events identified in S. pombe were conserved and predicted novel phosphorylation in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号