首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unanchored polyubiquitin chains are emerging as important regulators of cellular physiology with diverse roles paralleling those of substrate‐conjugated polyubiquitin. However tools able to discriminate unanchored polyubiquitin chains of different isopeptide linkages have not been reported. We describe the design of a linker‐optimized ubiquitin‐binding domain hybrid (t‐UBD) containing two UBDs, a ZnF‐UBP domain in tandem with a linkage‐selective UBA domain, which exploits avidity effects to afford selective recognition of unanchored Lys48‐linked polyubiquitin chains. Utilizing native MS to quantitatively probe binding affinities we confirm cooperative binding of the UBDs within the synthetic protein, and desired binding specificity for Lys48‐linked ubiquitin dimers. Furthermore, MS/MS analyses indicate that the t‐UBD, when applied as an affinity enrichment reagent, can be used to favor the purification of endogenous unanchored Lys48‐linked polyubiquitin chains from mammalian cell extracts. Our study indicates that strategies for the rational design and engineering of polyubiquitin chain‐selective binding in nonbiological polymers are possible, paving the way for the generation of reagents to probe unanchored polyubiquitin chains of different linkages and more broadly the ‘ubiquitome’. All MS data have been deposited in the ProteomeXchange with identifier PXD004059 ( http://proteomecentral.proteomexchange.org/dataset/PXD004059 ).  相似文献   

2.
The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage‐selective recognition of Ub chains by Ub‐binding domain (UBD)‐containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY‐1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48‐linked polyUb. We here identify that this linkage‐selective binding is mediated by a single MIU motif (MIU2) in MINDY‐1. The crystal structure of MIU2 in complex with K48‐linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48‐linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.  相似文献   

3.
The ubiquitin (Ub)–proteasome system is the primary mechanism for maintaining protein homeostasis in eukaryotes, yet the underlying signaling events and specificities of its components are poorly understood. Proteins destined for degradation are tagged with covalently linked polymeric Ub chains and subsequently delivered to the proteasome, often with the assistance of shuttle proteins that contain Ub-like domains. This degradation pathway is riddled with apparent redundancy—in the form of numerous polyubiquitin chains of various lengths and distinct architectures, multiple shuttle proteins, and at least three proteasomal receptors. Moreover, the largest proteasomal receptor, Rpn1, contains one known binding site for polyubiquitin and shuttle proteins, although several studies have recently proposed the existence of an additional uncharacterized site. Here, using a combination of NMR spectroscopy, photocrosslinking, mass spectrometry, and mutagenesis, we show that Rpn1 does indeed contain another recognition site that exhibits affinities and binding preferences for polyubiquitin and Ub-like signals comparable to those of the known binding site in Rpn1. Surprisingly, this novel site is situated in the N-terminal section of Rpn1, a region previously surmised to be devoid of functionality. We identified a stretch of adjacent helices as the location of this previously uncharacterized binding site, whose spatial proximity and similar properties to the known binding site in Rpn1 suggest the possibility of multivalent signal recognition across the solvent-exposed surface of Rpn1. These findings offer new mechanistic insights into signal recognition processes that are at the core of the Ub–proteasome system.  相似文献   

4.
5.
Ota K  Kito K  Iemura S  Natsume T  Ito T 《Proteomics》2008,8(15):3004-3007
We developed a parallel affinity purification (PAP) procedure, in which ubiquitinated proteins are purified from the cells that coexpress two affinity-tagged ubiquitins by sequential use of affinity chromatography specific to each tag. In contrast with previous procedures using a single affinity-tagged ubiquitin, the PAP eliminates highly abundant ubiquitin monomers and monoubiquitinated proteins to selectively enrich proteins bearing both affinity-tags, or poly- and multiubiquitinated proteins. Accordingly, it would serve as a powerful method to facilitate mass-spectrometric identification of ubiquitinated proteins.  相似文献   

6.
The bacterial periplasmic methionine‐binding protein MetQ is involved in the import of methionine by the cognate MetNI methionine ATP binding cassette (ABC) transporter. The MetNIQ system is one of the few members of the ABC importer family that has been structurally characterized in multiple conformational states. Critical missing elements in the structural analysis of MetNIQ are the structure of the substrate‐free form of MetQ, and detailing how MetQ binds multiple methionine derivatives, including both l ‐ and d ‐methionine isomers. In this study, we report the structures of the Neisseria meningitides MetQ in substrate‐free form and in complexes with l ‐methionine and with d ‐methionine, along with the associated binding constants determined by isothermal titration calorimetry. Structures of the substrate‐free (N238A) and substrate‐bound N. meningitides MetQ are related by a “Venus‐fly trap” hinge‐type movement of the two domains accompanying methionine binding and dissociation. l ‐ and d ‐methionine bind to the same site on MetQ, and this study emphasizes the important role of asparagine 238 in ligand binding and affinity. A thermodynamic analysis demonstrates that ligand‐free MetQ associates with the ATP‐bound form of MetNI ~40 times more tightly than does liganded MetQ, consistent with the necessity of dissociating methionine from MetQ for transport to occur.  相似文献   

7.
8.
Although genome‐editing enzymes such as TALEN and CRISPR/Cas9 are being widely used, they have an essential limitation in that their relatively high‐molecular weight makes them difficult to be delivered to cells. To develop a novel genome‐editing enzyme with a smaller molecular weight, we focused on the engrailed homeodomain (EHD). We designed and constructed proteins composed of two EHDs connected by a linker to increase sequence specificity. In bacterial one‐hybrid assays and electrophoresis mobility shift assay analyses, the created proteins exhibited good affinity for DNA sequences consisting of two tandemly aligned EHD target sequences. However, they also bound to individual EHD targets. To avoid binding to single target sites, we introduced amino acid mutations to reduce the protein–DNA affinity of each EHD monomer and successfully created a small protein with high specificity for tandem EHD target sequences.  相似文献   

9.
Human protein C (hPC) is glycosylated at three Asn‐X‐Ser/Thr and one atypical Asn‐X‐Cys sequons. We have characterized the micro‐ and macro‐heterogeneity of plasma‐derived hPC and compared the glycosylation features with recombinant protein C (tg‐PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N‐glycans of hPC are complex di‐ and tri‐sialylated structures, and we measured 78% site occupancy at Asn‐329 (the Asn‐X‐Cys sequon). The N‐glycans of tg‐PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn‐X‐Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg‐PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn‐329 site. The N‐glycan structures found for tg‐PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N‐glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.  相似文献   

10.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

11.
The purpose of this study was to evaluate Cellvibrio japonicus as a potential host strain for one‐step bioconversion of hemicellulose polymers to value‐added products. C. japonicus could be cultivated on all main lignocellulose monosaccharides as well as xylan polymers as a sole carbon source. This is particularly interesting as most industrially relevant bacteria are neither able to depolymerize wood polymers nor metabolize most hemicellulose monosaccharides. As a result, lignocellulose raw materials typically have to be degraded employing additional processes while the complete conversion of all lignocellulose sugars remains a challenge. Exemplary for a value‐added product, a one‐step conversion of xylan polymers to mono‐rhamnolipid biosurfactants with C. japonicus after transformation with the plasmid pSynPro8oT carrying the genes rhlAB was demonstrated. As achieved product yields in this one‐step bioconversion process are comparably low, many challenges remain to be overcome for application on an industrial scale. Nonetheless, this study provides a first step in the search for establishing a future host strain for bioeconomy, which will ideally be used for bioconversion of lignocellulose polymers with as little exhaustive pretreatment as possible.  相似文献   

12.
Uveal melanoma (UM) is a rare intraocular cancer with the highest incidence in northern latitudes. Metastases develop in approximately 50% of patients, whereafter the median survival is 13 months. Generally, the mutation burden of these tumors is low. Germline variants predisposing to UM have been previously described in BRCA1‐associated protein 1 (BAP1). Recently, germline and somatic loss‐of‐function (LOF) variants in the methyl‐CpG‐binding domain 4 (MBD4) gene have been found to cause a hypermutated UM, and MBD4 also has been put forward as a gene predisposing to UM. We sequenced for MBD4 germline variants in 440 Finnish patients with UM and identified seven rare exonic missense variants in 16 (3.6%) patients, of which one likely alters MBD4 function. The frequency of likely pathogenic variants in our cohort is 0.23% (1/432; 95% CI, 0.01–1.28). We identified no LOF variants though their frequency in the Finnish population is 0.052%. Thus, our data do not support the suggestion that MBD4 germline variants predispose to UM. Somatic loss of MBD4 might modify the mutational burden in UM and change its response to immune checkpoint inhibitors.  相似文献   

13.
Deciphering antibody‐protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein‐protein complexes. We investigated the physicochemical properties of regions on and away from the antibody‐antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody‐protein antigen recognition is entropy driven, with residues having low side‐chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody‐antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody‐antigen interfaces and of Fab domains as compared with nonantibody protein‐protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures.  相似文献   

14.
15.
The UFD (ubiquitin fusion degradation) pathway is responsible for multiubiquitination of the fusion proteins that bear a "non-removable" N-terminal ubiquitin moiety. Previous reports have shown that the UFD pathway is conserved from yeast to human. The essential elements of the UFD pathway have also been identified in Saccharomyces cerevisiae. These studies, however, are limited to use of engineered UFD substrates. The biological significance of the UFD pathway remains unknown. Here we demonstrate that Ufd4, the E3 component of the UFD pathway, is involved in controlling the degradation of Rad4, a nucleotide excision repair protein. Moreover, simultaneous loss of Ufd4 and Rad23 exhibits a synthetic inhibitory effect on Rad4 degradation, presenting the first example that a UBA/UBL-domain protein functionally overlaps with a ubiquitin ligase in determining the turnover rate of a protein substrate. The current work also provides a direction for further investigation of the physiological functions of the UFD pathway.  相似文献   

16.
17.
Purified preparations of the recombinant b′x domain fragment of human protein‐disulphide isomerase (PDI), which are homogeneous by mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis, comprise more than one species when analyzed by ion‐exchange chromatography and nondenaturing polyacrylamide gel electrophoresis. These species were resolved and shown to be monomer and dimer by analytical ultracentrifugation and analytical size‐exclusion chromatography. Spectroscopic properties indicate that the monomeric species corresponds to the “capped” conformation observed in the x‐ray structure of the I272A mutant of b′x (Nguyen, Wallis, Howard, Haapalainen, Salo, Saaranen, Sidhu, Wierenga, Freedman, Ruddock, and Williamson, J Mol Biol 2008;383:1144‐1155) in which the x region binds to a hydrophobic patch on the surface of the b′ domain; conversely, the dimeric species has an “open” or “uncapped” conformation in which the x region does not bind to this surface. The larger bb′x fragment of human PDI shows very similar behavior to b′x and can be resolved into a capped monomeric species and an uncapped dimer. Preparations of recombinant b′ domain of human PDI and of the bb′ domain pair are found exclusively as dimers. Full‐length PDI is known to comprise a mixture of monomeric and dimeric species, whereas the isolated a , b , and a′ domains of PDI are found exclusively as monomers. These results show that the b′ domain of human PDI tends to form homodimers—both in isolation and in other contexts—and that this tendency is moderated by the adjacent x region, which can bind to a surface patch on the b′ domain.  相似文献   

18.
In recent years proteomics became increasingly important to functional genomics. Although a large amount of data is generated by high throughput large‐scale techniques, a connection of these mostly heterogeneous data from different analytical platforms and of different experiments is limited. Data mining procedures and algorithms are often insufficient to extract meaningful results from large datasets and therefore limit the exploitation of the generated biological information. In our proteomic core facility, which almost exclusively focuses on 2‐DE/MS‐based proteomics, we developed a proteomic database custom tailored to our needs aiming at connecting MS protein identification information to 2‐DE derived protein expression profiles. The tools developed should not only enable an automatic evaluation of single experiments, but also link multiple 2‐DE experiments with MS‐data on different levels and thereby helping to create a comprehensive network of our proteomics data. Therefore the key feature of our “PROTEOMER” database is its high cross‐referencing capacity, enabling integration of a wide range of experimental data. To illustrate the workflow and utility of the system, two practical examples are provided to demonstrate that proper data cross‐referencing can transform information into biological knowledge.  相似文献   

19.
We introduce a fluorescent reporter for monitoring protein–protein interactions in living cells. The method is based on the Split‐Ubiquitin method and uses the ratio of two auto‐fluorescent reporter proteins as signal for interaction (SPLIFF). The mating of two haploid yeast cells initiates the analysis and the interactions are followed online by two‐channel time‐lapse microscopy of the diploid cells during their first cell cycle. Using this approach we could with high spatio‐temporal resolution visualize the differences between the interactions of the microtubule binding protein Stu2p with two of its binding partners, monitor the transient association of a Ran‐GTPase with its receptors at the nuclear pore, and distinguish between protein interactions at the polar cortical domain at different phases of polar growth. These examples further demonstrate that protein–protein interactions identified from large‐scale screens can be effectively followed up by high‐resolution single‐cell analysis.  相似文献   

20.
Cryogel is a physical gel formed by the heterophilic aggregation of extra domain A (EDA) containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep) in the blood of rheumatoid arthritis (RA) patients. In cryogelation EDA(+)FN cross-links to form an interaggregate of cryogel with Hep. In the present study, we determined the recognition structure of Hep for EDA(+)FN by using oligo- and desulfonated-Hep. The affinity constant (KA) (1.2×108 per M) of oligo-Hep for EDA(+)FN did not change with a decrease in number-average molecular weight (4.9×104→6.0×103). The KA-value of desulfonated-Hep for EDA(+)FN decreased from 3.2×108 to 1.0×107 per M with a decrease in the sulfonation ratio (7.0→4.3%). We also determined the recognition structure of EDA(+)FN for Hep by an inhibition experiment on the heparin binding domain II (HepII) in EDA(+)FN with the synthetic peptides, Arg–Arg–Ala–Arg (RRAR), Asp–Gln–Ala–Arg (DNAR), Ile–Lys–Tyr–Glu–Lys (IKYEK), and Gly–Arg–Lys–Lys–Try (GRKKT). The GRKKT sequence clearly inhibited bonding between EDA(+)FN and Heps containing oligo- and desulfonated-Hep. The amount of cryogel formed in the RA-patient model plasma corresponded to the EDA(+)FN concentration in cryogel (36.7%) normalized by the EDA(+)FN concentration in plasma. When GRKKT was added to plasma, the EDA(+)FN concentration fell to 10.5%. These results demonstrated that inhibition of cryogelation in plasma could progress to a novel treatment for RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号