首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.  相似文献   

2.
Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1K321R) increases PDH activity, compared to the K321 acetylation mimic (PDHA1K321Q) or wild-type PDHA1. Finally, PDHA1K321Q exhibited a more transformed in vitro cellular phenotype compared to PDHA1K321R. These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration.  相似文献   

3.
Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.  相似文献   

4.
Unravelling the molecular basis of capacitation is crucial to our understanding the basis of acquisition of fertilization competence by spermatozoa. In two recent studies, we have demonstrated that dihydrolipoamide dehydrogenase, which is a post-pyruvate metabolic enzyme and one of the components of pyruvate dehydrogenase complex, undergoes capacitation-dependent tyrosine phosphorylation, and that the activity of the enzyme correlates with capacitation events in the hamster spermatozoa. However, it is not clear as to whether other components of the pyruvate dehydrogenase complex are also crucial for sperm capacitation. In this report, we have identified pyruvate dehydrogenase A2 (PDHA2), a constituent of pyruvate dehydrogenase A (PDHA), which is a component of pyruvate dehydrogenase complex that exhibits tyrosine phosphorylation during hamster spermatozoal capacitation. This is the first report showing that hamster sperm PDHA2 is a testis-specific phosphotyrosine that is associated with the fibrous sheath of hamster spermatozoa. The localization of PDHA2 in spermatozoa was investigated using antibodies to PDHA, which is the active tetrameric protein that consists of a homodimer of PDHA2 and PDHB. Both immunofluorescence and confocal studies indicated a unique non-canonical, extramitochondrial localization for PDHA in the principal piece of hamster spermatozoa. It was also observed that PDHA colocalized with AKAP4 in the fibrous sheath of the spermatozoon. The enzymatic activity of PDHA was positively correlated with hyperactivation but not with the acrosome reaction. Given the localization of PDHA and the evidence that its activity correlates positively with hyperactivation and that its PDHA2 subunit exhibits capacitation-associated protein tyrosine phosphorylation, it appears that PDHA2 is associated with the process of capacitation.  相似文献   

5.
Selective amino acid restriction targets mitochondria resulting in DU145 and PC3 prostate cancer cell death. This study shows that restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln), or methionine (Met) differentially modulates glucose metabolism, glycogen synthase kinase 3β (GSK3β), p53, and pyruvate dehydrogenase (PDH) in these two cell lines. In DU145 cells, Gln and Met restriction increase glucose consumption, but Tyr/Phe restriction does not. Addition of glucose to culture media diminishes cell death induced by Tyr/Phe‐restriction. Addition of pyruvate reduces cell death due to Tyr/Phe and Gln restriction. Tyr/Phe, Gln and Met restriction increase phosphorylation of GSK3β‐Ser9, phosphorylation of p53‐Ser15 and reduce the mitochondrial localization of PDH. Addition of glucose or pyruvate to cultures significantly reverses the alterations in GSK3β, p53 and PDH induced by amino acid restriction. In p53‐null PC3 cells, Tyr/Phe, Gln and Met restriction decreases glucose consumption, reduces phosphorylation of Akt‐Ser473, and increases phosphorylation of GSK3β‐Ser9. Addition of pyruvate or glucose reduces death of Met‐restricted cells. Addition of glucose increases phosphorylation of Akt‐Ser473 in amino acid‐restricted cells reduces phosphorylation of GSK3β‐Ser9 in Tyr/Phe and Gln restricted cells and increases phosphorylation of GSK3β‐Ser9 in Met restricted cells. Addition of pyruvate reduces phosphorylation of GSK3β‐Ser9 in all amino acid‐restricted cells. In summary, cell death induced by specific amino acid restriction is dependent on or closely related to the modulation of glucose metabolism. GSK3β (DU145 and PC3) and p53 (DU145) are crucial switches connecting metabolism and these signaling molecules to cell survival during amino acid restriction. J. Cell. Physiol. 224: 491–500, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The aim of this study was to clarify the mechanisms related to plasma glucose concentration in mice fed a diet rich in n-3 polyunsaturated fatty acids (n-3 PUFAs). Male Crlj:CD-1 (ICR) mice were fed experimental diets containing 6% lard (LD), 6% fish oil (FO) or 4.1% lard plus 1.5% docosahexaenoic acid ethyl ester and 0.4% eicosapentaenoic acid ethyl ester (DE) for 12 weeks. There were no marked differences in plasma glucose and insulin concentration changes on glucose tolerance test between the three dietary groups. At the end of the feeding trial, plasma glucose concentration was significantly lower in fasted mice in the FO group than in those in the LD group (P<.005). Plasma adiponectin concentration was significantly higher in the FO group than in the LD group (P<.05). Hexokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase and glycerophosphate dehydrogenase activities in skeletal muscle tended to be lower in the FO group than in the LD group, while there were no differences in glucokinase and phosphofructokinase activities in liver between the three dietary groups. However, hepatic glycerophosphate dehydrogenase activity was 53-fold and 4.2-fold higher in the FO group than in the LD and DE groups, respectively (P<.0005 and P<.05, respectively). These results suggest that the reduction in plasma glucose concentration in mice fed n-3 PUFAs is mainly caused by acceleration of glucose uptake and glycerol synthesis in the liver rather than in the skeletal muscle.  相似文献   

7.
8.
Tumor necrosis factor (TNF) induced cell death in murine fibrosarcoma L929 cells is a model system in studying programed necrosis (also known as necroptosis). Receptor interacting protein 3 (RIP3), a serine–threonine kinase, is known to play an essential role in TNF‐induced necroptosis; however, the phosphorylation events initiated by RIP3 activation in necroptotic process is still largely unknown. Here, we performed a quantitative MS based analysis to compare TNF‐induced changes in the global phosphoproteome of wild‐type (RIP3+/+) and RIP3‐knockdown L929 cells at different time points after TNF treatment. A total of 8058 phosphopeptides spanning 6892 phosphorylation sites in 2762 proteins were identified in the three experiments, in which cells were treated with TNF for 0.5, 2, and 4 h. By comparing the phosphorylation sites in wild‐type and RIP3‐knockdown L929 cells, 174, 167, and 177 distinct phosphorylation sites were revealed to be dependent on RIP3 at the 0.5, 2, and 4 h time points after TNF treatment, respectively. Notably, most of them were not detected in a previous phosphoproteomic analysis of RIP3‐dependent phosphorylation in lipopolysaccharide‐stimulated peritoneal macrophages and TNF‐treated murine embryonic fibroblasts (MEFs), suggesting that the data presented in this report are highly relevant to the study of TNF‐induced necroptosis of L929 cells.  相似文献   

9.
Recently, we demonstrated that pyruvate dehydrogenase A2 (PDHA2) is tyrosine phosphorylated in capacitated hamster spermatozoa. In this report, using bromopyruvate (BP), an inhibitor of PDHA, we demonstrated that hamster sperm hyperactivation was blocked regardless of whether PDHA was inhibited prior to or after the onset of hyperactivation, but the acrosome reaction was blocked only if PDHA was inhibited prior to the onset of the acrosome reaction. Further, inhibition of PDHA activity did not inhibit capacitation-associated protein tyrosine phosphorylation observed in hamster spermatozoa. It is demonstrated that the essentiality of PDHA for sperm capacitation is probably dependent on its ability to generate effectors of capacitation such as reactive oxygen species (ROS) and cAMP, which are significantly decreased in the presence of BP. MICA (5-methoxyindole-2-carboxylic acid, a specific inhibitor of dihydrolipoamide dehydrogenase [DLD]), another component of the pyruvate dehydrogenase complex (PDHc), also significantly inhibited ROS generation and cAMP levels thus implying that these enzymes of the PDHc are required for ROS and cAMP generation. Furthermore, dibutryl cyclic adenosine monophosphate could significantly reverse the inhibition of hyperactivation observed in the presence of BP and inhibition of acrosome reaction observed in the presence of BP or MICA. The calcium ionophore, A23187, could also significantly reverse the inhibitory effect of BP and MICA on sperm acrosome reaction. These results establish that PDHA is required for hamster sperm hyperactivation and acrosome reaction, and DLD is required for hamster acrosome reaction. This study also provides evidence that ROS, cAMP, and calcium are involved downstream to PDHA.  相似文献   

10.
Porcine zygotic genome activation (ZGA) occurs along with global epigenetic remodeling at the 4-cell stage. These processes are regulated by histone acetylation, which requires acetyl-coenzyme A (CoA). Pyruvate dehydrogenase complex (PDC) is a crucial enzyme in glucose metabolism that converts pyruvate into acetyl-CoA. In mammalian cells, acetyl-CoA is produced by pyruvate dehydrogenase alpha 1 (PDHA1) translocated into the nucleus in special conditions. To determine whether zygotic PDHA1 plays a critical role in promoting histone acetylation during ZGA, a CRISPR/Cas9 genome editing system using multiple guide RNAs was employed to generate a PDHA1-targeted parthenogenetic embryo model. Results of immunofluorescent staining showed that the nuclear accumulation of PDHA1 during ZGA was significantly inhibited by PDHA1 targeting. Meanwhile, the 4-cell arrest rate significantly increased at 72 h after activation, indicating impeded embryonic development. In addition, nuclear histone acetylation significantly decreased when PDHA1 was targeted, and quantitative PCR showed that expression of several zygotic genes was significantly decreased in the PDHA1-targeting group compared to the control group. Overexpression of PDHA1 recovered the nuclear PDHA1, H3K9Ac and H3K27Ac and EIF1A expression levels. Moreover, the 5-to-8-cell-stage embryo development rate was only partially rescued. In conclusion, expression of zygotic origin PDHA1 contributes to porcine ZGA by maintaining histone acetylation in porcine embryos.  相似文献   

11.
We report the cloning and mapping of a gene (PDHA)for the pyruvate dehydrogenase E1α subunit in marsupials. In situ hybridization and Southern blot analysis show that PDHA is autosomal in marsupials, mapping to chromosome 3q in Sminthopsis macroura and 5p in Macropus eugenii. Since these locations represent a region that was translocated to the p arm of the human X chromosome following marsupial/eutherian divergence, we suggest that the marsupial PDHA gene is homologous to PDHA1, the somatic eutherian isoform located on human Xp and mouse X. Only one copy of PDHA is found in marsupials, whereas a second, testis-specific, intronless form is observed in eutherian mammals. We also suggest that translocation of PDHA to the eutherian X chromosome, which is inactivated during spermatogenesis, led to the evolution of a second testis-specific locus by retroposition to an autosome.  相似文献   

12.

Background

Our previous works have demonstrated that Helicobacter pylori (Hp) infection can alter histone H3 serine 10 phosphorylation status in gastric epithelial cells. However, whether Helicobacter pylori‐induced histone H3 serine 10 phosphorylation participates in gastric carcinogenesis is unknown. We investigate the expression of histone H3 serine 10 phosphorylation in various stages of gastric disease and explore its clinical implication.

Materials and Methods

Stomach biopsy samples from 129 patients were collected and stained with histone H3 serine 10 phosphorylation, Ki67, and Helicobacter pylori by immunohistochemistry staining, expressed as labeling index. They were categorized into nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, low‐grade intraepithelial neoplasia, high‐grade intraepithelial neoplasia, and intestinal‐type gastric cancer groups. Helicobacter pylori infection was determined by either 13C‐urea breath test or immunohistochemistry staining.

Results

In Helicobacter pylori‐negative patients, labeling index of histone H3 serine 10 phosphorylation was gradually increased in nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia groups, peaked at low‐grade intraepithelial neoplasia, and declined in high‐grade intraepithelial neoplasia and gastric cancer groups. In Helicobacter pylori‐infected patients, labeling index of histone H3 serine 10 phosphorylation followed the similar pattern as above, with increased expression over the corresponding Helicobacter pylori‐negative controls except in nonatrophic gastritis patient whose labeling index was decreased when compared with Helicobacter pylori‐negative control. Labeling index of Ki67 in Helicobacter pylori‐negative groups was higher in gastric cancer than chronic atrophic gastritis and low‐grade intraepithelial neoplasia groups, and higher in intestinal metaplasia group compared with chronic atrophic gastritis group. In Helicobacter pylori‐positive groups, Ki67 labeling index was increased stepwise from nonatrophic gastritis to gastric cancer except slightly decrease in chronic atrophic gastritis group. In addition, we noted that histone H3 serine 10 phosphorylation staining is accompanied with its location changes from gastric gland bottom expanded to whole gland as disease stage progress.

Conclusions

These results indicate that stepwise gastric carcinogenesis is associated with altered histone H3 serine 10 phosphorylation, Helicobacter pylori infection enhances histone H3 serine 10 phosphorylation expression in these processes; it is also accompanied with histone H3 serine 10 phosphorylation location change from gland bottom staining expand to whole gland expression. The results suggest that epigenetic dysregulation may play important roles in Helicobacter pylori‐induced gastric cancer.  相似文献   

13.
The presence of palmitoyl-L-carnitine and acetoacetate (separately) decreased flux through pyruvate dehydrogenase in isolated mitochondria from rat hind-limb muscle. The effect of acetoacetate was dependent on the presence of 2-oxoglutarate and Ca2+. Palmitoylcarnitine, but not acetoacetate, also decreased the mitochondrial content of active dephospho-pyruvate dehydrogenase (PDHA). This effect was large only in the presence of EGTA. Addition of Ca2+-EGTA buffers stabilizing pCa values of 6.48 or lower gave near-maximal values of PDHA content, irrespective of the presence of fatty acids or ketones when mitochondria were incubated under the same conditions used for the flux studies, i.e. at low concentrations of pyruvate. There was, however, a minor decrement in PDHA content in response to palmitoylcarnitine oxidation when the substrate was L-glutamate plus L-malate. Measurement of NAD+, NADH, CoA and acetyl-CoA in mitochondrial extracts in general showed decreases in [NAD+]/[NADH] and [CoA]/[acetyl-CoA] ratios in response to the oxidation of palmitoylcarnitine and acetoacetate, providing a mechanism for both decreased PDHA content and feedback inhibition of the enzyme in the PDHA form. However, only changes in [CoA]/[acetyl-CoA] ratio appear to underlie the decreased PDHA content on addition of palmitoylcarnitine when mitochondria are incubated with L-glutamate plus L-malate (and no pyruvate) as substrate. The effect of palmitoylcarnitine oxidation on flux through pyruvate dehydrogenase and on PDHA content is less marked in skeletal-muscle mitochondria than in cardiac-muscle mitochondria. This may reflect the less active oxidation of palmitoylcarnitine by skeletal-muscle mitochondria, as judged by State-3 rates of O2 uptake. In addition, Ca2+ concentration is of even greater significance in pyruvate dehydrogenase interconversion in skeletal-muscle mitochondria than in cardiac-muscle mitochondria.  相似文献   

14.
Biochemical analysis was performed in muscle tissue and in fibroblasts of four unrelated females consecutively diagnosed with a 'de novo' point mutation in the PDHA1 gene. Pyruvate dehydrogenase E1 subunit deficiency was confirmed in the muscle sample of all patients, however, in three out of four cases the activity of the pyruvate dehydrogenase complex in fibroblasts showed a normal activity. A skewed inactivation was confirmed of the maternal X chromosome in fibroblasts in all children. Due to the possibility of a skewed X inactivation pattern enzyme measurements in fibroblasts are not always reliable for the diagnosis of a PDHc defect in females. Based on the overlapping features of PDHc deficiency with those of the disorders of the oxidative phosphorylation we suggest performing a fresh muscle biopsy for detailed biochemical analysis in females with a suspected pyruvate dehydrogenase deficiency, followed by molecular genetic analysis of the PDHA1 gene.  相似文献   

15.
Accumulating evidence suggests that inhibition of mitogen‐activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator‐activated receptor γ (PPARγ) at serine 273, which mitigates obesity‐associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3‐L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3‐L1 pre‐adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone‐treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM‐induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone‐treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK‐induced phosphorylation of PPARγ at serine 273.  相似文献   

16.
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post‐translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin‐1) by RIPK4 (receptor‐interacting serine–threonine kinase 4) during epidermal differentiation. With genome‐editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo. Phosphorylation of PKP1's N‐terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK‐PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.  相似文献   

17.
n?3 polyunsaturated fatty acids (PUFAs) present in fish oil (FO) potently decrease serum lipids, which is also an effect of thyroid hormones. Both PUFAs and thyroid hormones affect hepatic lipid metabolism, and here we hypothesized that a long-term diet rich in n?3 PUFAs would enhance thyroid hormone action in the liver. Female rats received isocaloric and normolipid diets containing either soybean oil (SO) or FO during lactation. Male offspring received the same diet as their dams since weaning until sacrifice when they were 11 weeks old. FO group, as compared to SO group, exhibited lower body weight since 5 weeks of age until sacrifice, with no alterations in food ingestion, lower retroperitoneal white fat mass and elevated inguinal fat mass relative to body weight, with unchanged water and lipid but reduced protein percentage in their carcasses. FO diet resulted in lower serum triglycerides and cholesterol. Serum total triiodothyronine, total thyroxine and thyrotropin were similar between groups. However, liver thyroid hormone receptor (TR) β1 protein expression was higher in the FO group and correlated negatively with serum lipids. Liver 5′-deiodinase activity, which converts thyroxine into triiodothyronine, was similar between groups. However, the activity of hepatic mitochondrial glycerophosphate dehydrogenase, the enzyme involved in thermogenesis and a well-characterized target stimulated by T3 via TRβ1, was higher in the FO group, suggesting enhancement of thyroid hormone action. These findings suggest that the increase in thyroid hormone signaling pathways in the liver may be one of the mechanisms by which n?3 PUFAs exert part of their effects on lipid metabolism.  相似文献   

18.
1. The mitochondrial content of active (dephospho) pyruvate dehydrogenase (PDHA) was found to be severalfold higher at an extramitochondrial Ca2+ concentration of 2 microM (pCa6) than at pCa7. The nature of the respiratory substrate did not affect this finding. 2. This Ca2+-dependence was shown in state-4 and 50%-state-3 conditions [see Chance & Williams (1956) Adv. Enzymol. 17, 65-134], but was absent in the presence of excess ADP (state 3). 3. Na+ and Mg2+ ions shifted the pCa value required for a maximal PDHA content to lower values. This was attributed to a stimulation of mitochondrial Ca2+ egress and an inhibition of uptake, respectively. Na+ ions diminished pyruvate dehydrogenase phosphate phosphatase activity in mitochondria which had been extensively depleted of Ca2+ ions by incubation with EGTA, raising the possibility of a direct inhibitory effect of Na+ ions, unrelated to Ca2+ movements. 4. Mg2+ ions lowered the mitochondrial PDHA content at pCa 6.24 and 6.48, but had only minimal effects in the presence of EGTA. 5. The effects of P1 and bicarbonate ions on PDHA content were also studied, as possible effectors of mitochondrial Ca2+ transport. Bicarbonate ions abolished the response to Ca2+ ions, by generating maximal values of PDHA content, but such a response was still observed when physiological concentrations of both P1 and bicarbonate were used. 6. The pCa of the medium in the range 6.33 to over 7 affected PDHA content, with only very minor changes in state-4 rates of O2 uptake and no change in [ATP]/[ADP] ratio or in mitochondrial [NADH]/[NAD+] ratio, provided that Mg2+ ions were present. Thus the effect of Ca2+ ions on PDHA content is unlikely to be mediated by changes in [ATP]/[ADP] and [NADH]/[NAD+] ratio and is more likely to be direct. Equally, changes in the [acetyl-CoA]/[CoA] ratio in response to Ca2+ ions when the substrate was pyruvate were the converse of those required to mediate changes in interconversion, and are probably secondary to changes in PDHA content.  相似文献   

19.
Cancer cells predominantly generate energy via glycolysis, even in the presence of oxygen, to support abnormal cell proliferation. Suppression of PDHA1 by PDK1 prevents the conversion of cytoplasmic pyruvate into Acetyl-CoA. Several PDK inhibitors have been identified, but their clinical applications have not been successful for unclear reasons. In this study, endogenous PDHA1 in A549 cells was silenced by the CRISPR/Cas9 system, and PDHA1WT and PDHA13SD were transduced. Since PDHA13SD cannot be phosphorylated by PDKs, it was used to evaluate the specific activity of PDK inhibitors. This study highlights that PDHA1WT and PDHA13SD A549 cells can be used as a cell-based PDK inhibitor-distinction system to examine the relationship between PDH activity and cell death by established PDK inhibitors. Leelamine, huzhangoside A and otobaphenol induced PDH activity-dependent apoptosis, whereas AZD7545, VER-246608 and DCA effectively enhanced PDHA1 activity but little toxic to cancer cells. Furthermore, the activity of phosphomimetic PDHA1 revealed the complexity of its regulation, which requires further in-depth investigation.  相似文献   

20.
Ovarian cancer (OC) is a common reason for gynecologic cancer death. Standard treatments of OC consist of surgery and chemotherapy. However, chemoresistance should be considered. Exosomal miR-21-5p has been shown to regulate the chemosensitivity of cancer cells through regulating pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1). However, the role of miR-21-5p/PDHA1 in OC is unclear. The levels of miR-21-5p and PDHA1 in clinical samples and cells were investigated. Exosomes derived from SKOV3/cisplatin (SKOV3/DDP) cells (DDP-Exos) were isolated and used to treat SKOV3 cells to test DDP-Exos effects on SKOV3 cells. Extracellular acidification rate and oxygen consumption rate were tested with a Seahorse analyzer. Cell apoptosis was analyzed by a flow cytometer. PDHA1 was overexpressed and miR-21-5p was silenced in SKOV3 cells to study the underlying mechanism of miR-21-5p in OC. Quantitative real-time PCR and immunoblots were applied to measure gene expression at mRNA and protein levels. The levels of PDHA1 in DDP-resistant SKOV3 or tumor tissues were significantly decreased while the levels of miR-21-5p were remarkably upregulated. miR-21-5p in DDP-Exos was sharply increased compared to that of Exos. Data also indicated that DDP-Exos treatment suppressed the sensitivity of SKOV3 cells to DDP and promoted cell viability and glycolysis of SKOV3 cells through inhibiting PDHA1 by exosomal miR-21-5p. miR-21-5p derived from DDP-resistant SKOV3 OC cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Our data highlights the important role of miR-21-5p/PDHA1 axis in OC and sheds light on new therapeutic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号