首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the virulence of a pathogen population and recognition of the risks of changes in the virulence spectrum are essential in breeding crops for disease resistance. Sexual recombination in a pathogen increases the level of genotypic diversity and can influence the virulence spectrum. This study aimed to determine how sexual recombination can change virulence of the barley pathogen Pyrenophora teres and whether the barley cultivation system, no‐tillage or normal tillage, influences P. teres virulence. The inheritance of avirulence/virulence in P. teres following sexual reproduction was studied in three artificially created pathogen populations. The first was a product of crossing two net forms of the pathogen, and the second and the third were products of crossing net and spot forms. None of the progeny generated resembled the parents exactly. The average similarity of the progeny isolates of the net by net cross with the parental type, based on avirulence/virulence tests, was 92%. That for net and spot form progenies was 58% in comparison with the net form parents and 73% with the spot form parents. The virulence reactions of the progeny isolates did not correlate with morphological traits of the isolates: growth rate on agar, spore production, spore width, spore length and numbers of septa per conidium. To study the effect of the barley cultivation method on P. teres virulence, 313 single‐spore cultures were obtained from barley fields. Two hundred and seventy‐six of the isolates represented the spot form and 37 represented the net form of P. teres. No association was established between the tillage method and virulence for either the net form or the spot form isolates.  相似文献   

2.
Barley‐pathogenic Pyrenophora isolates are P. graminea (PG), P. teres f. maculata (PTM) and P. teres f. teres (PTT), which cause foliar leaf stripe, spot blotch and net blotch lesions, respectively. However, the species are often indistinguishable by morphological and cultural characteristics. Random amplified polymorphic DNA (RAPD) analysis has been used to study the genetic relationship amongst 11 PG, 9 PTM and 23 PTT isolates from distant geographical locations. Using seven primers, 55 (52.38%) polymorphic DNA bands were detected out of 105 different fragments amplified in the three pathogens. Genotypic diversity was high as all but two PTT strains had distinct multilocus RAPD fingerprints. Unweighted pair‐group method with arithmetic average (UPGMA) clustering separated the isolates into three main clusters, corresponding to the three pathogens studied. No clear geographical substructuring was found. Nei's gene diversity analysis detected only small differences (max. 6.6%) in band frequencies but considerable levels of differentiation were observed among the pathogen species/forms. However, the variability among the Pyrenophora species/forms (max. 42.0%) was less than within species/forms (max. 58%). Nei's unbiased genetic distance values were in agreement with UPGMA clustering and gene diversity analysis: the two forms of P. teres showed higher divergence from one another (D = 0.132) than the distance found between PG and PTM (D = 0.094). The results suggest that the present taxonomical classification of these morphological taxa may not correspond to their phylogenetic relationship and that there is a very close genetic relationship amongst barley‐pathogenic Pyrenophora species, but genetic exchanges between them could be infrequent.  相似文献   

3.
4.
Aims: The aim of this study is to investigate the pathogenic diversity and virulence groups among Pyrenophora teres f. teres isolates, sampled from Syria and Tunisia, and to identify the most effective source of resistance in barley that could be used in breeding programmes to control net blotch in both countries. Methods and Results: One hundred and four isolates of P. teres f. teres were collected from barley in different agroecological zones of Tunisia and Syria. Their virulence was evaluated using 14 barley genotypes as differential hosts. The upgma clustering identified high pathogenic variability; the isolates were clustered onto 20 pathotypes that were sheltered under three virulence groups, with high, intermediate and low disease scores. According to susceptibility/resistance frequencies and mean disease ratings, CI05401 cultivar ranked as the best differential when inoculated with the Syrian isolates. However, CI09214 cultivar was classified as the best effective source of resistance in Tunisia. Conclusions: All P. teres f. teres isolates were differentially pathogenic. CI09214 and CI05401 cultivars were released as the most effective sources of resistance in Syria and Tunisia. Significance and Impact of the Study: National and international barley breeding programmes that seek to develop resistance against P. teres f. teres in barley should strongly benefit from this study. This resistance cannot be achieved without the proper knowledge of the pathogen virulence spectrum and the sources of host resistance.  相似文献   

5.
Amplified fragment length polymorphism (AFLP) analysis has been used to analyse mainly 83 Czech isolates of Pyrenophora teres, P. graminea, P. tritici‐repentis and Helminthosporium sativum. Each species had distinct AFLP profiles. Using 19 primer combinations 948 polymorphic bands were detected. All main clusters in dendrogram correspond to the studied species. Even the two forms of P. teresP. teres f. teres (PTT) and P. teres f. maculata (PTM) – formed different clusters. Genetic diversity, with regard to the locality and the year of the sample's collection, was analysed separately within the AFLP‐based dendrogram cluster of PTT and PTM. Unweighted pair‐group method (UPGMA) analysis of the 37 isolates of PTT and 30 isolates of PTM, using 469 polymorphic bands, showed that the variability seemed to have been influenced more by the year of sampling than by the geographic origin of the isolate. The presence of intermediate haplotypes with a relatively high number of shared markers between the two groups indicated that hybridization between the forms of P. teres could happen, but it is probably often overlapped by selection pressure or genetic drift.  相似文献   

6.
Barley net form net blotch (NFNB), caused by the necrotrophic fungus Pyrenophora teres f. teres, is a destructive foliar disease in barley‐growing regions worldwide. Little is known about the genetic and molecular basis of this pathosystem. Here, we identified a small secreted proteinaceous necrotrophic effector (NE), designated PttNE1, from intercellular wash fluids of the susceptible barley line Hector after inoculation with P. teres f. teres isolate 0–1. Using a barley recombinant inbred line (RIL) population developed from a cross between the sensitive/susceptible line Hector and the insensitive/resistant line NDB 112 (HN population), sensitivity to PttNE1, which we have named SPN1, mapped to a common resistance/susceptibility region on barley chromosome 6H. PttNE1–SPN1 interaction accounted for 31% of the disease variation when the HN population was inoculated with the 0–1 isolate. Strong accumulation of hydrogen peroxide and increased levels of electrolyte leakage were associated with the susceptible reaction, but not the resistant reaction. In addition, the HN RIL population was evaluated for its reactions to 10 geographically diverse P. teres f. teres isolates. Quantitative trait locus (QTL) mapping led to the identification of at least 10 genomic regions associated with disease, with chromosomes 3H and 6H harbouring major QTLs for resistance/susceptibility. SPN1 was associated with all the 6H QTLs, except one. Collectively, this information indicates that the barley–P. teres f. teres pathosystem follows, at least partially, an NE‐triggered susceptibility (NETS) model that has been described in other necrotrophic fungal disease systems, especially in the Dothideomycete class of fungi.  相似文献   

7.
8.
The aim of this study was to determine the genetic structure of South Australian field populations of the barley net blotch pathogens, Pyrenophora teres f. sp. teres (PTT) and P. teres f. sp. maculata (PTM), using microsatellite DNA markers. Three PTT populations (76 isolates total) and two PTM populations (43 isolates total) were sampled from separate fields during a single growing season. The results showed that of the 20 microsatellite loci examined, 17 (85 %) were polymorphic within the PTT and PTM populations. In total, 120 distinct alleles were identified of which only 11 (9 %) were shared between the two population types. Nei’s measure of gene diversity across the PTT and PTM populations was similar at 0.38 and 0.40, respectively, and also much higher than previously reported from studies in which other types of molecular markers were used. The coefficient of genetic differentiation among both populations was the same (GST = 0.03) and the low and insignificant estimates of FST, as indicated by θ, between populations of the same type (PTT: θ < 0.008, PTM: θ = 0.014) indicated that isolates sampled from different areas within the same field were genetically similar. In contrast, high and significant genetic differentiation was observed among and between populations of different type (GST = 0.42, θ > 0.567). The high number of unique multilocus haplotypes observed within the PTT (84 %) and PTM (100 %) populations, combined with a 1:1 distribution of both mating types, suggested that sexual reproduction was predominant among these populations. However, tests for multilocus associations showed that both PTT and PTM populations were in significant linkage disequilibrium. Although the levels of disequilibrium were low, an asexual reproductive component could not be excluded.  相似文献   

9.
A modified sequenced‐tagged microsatellite (STM) profiling procedure was used to develop 80 STMs for the barley net blotch pathogen, Pyrenophora teres. Of these, 60 STMs amplified 67 loci in one or both of the spot (P. teres f. maculata) and net (P. teres f. teres) forms of the pathogen. When screened on six field‐sampled isolates of each pathogen form, 25 STMs revealed 26 polymorphic loci, with an average of 3.2 ± 1.0 alleles and mean gene diversity of 0.59 ± 0.12.  相似文献   

10.
Net blotch [Pyrenophora teres (Died.) Drechsl.] and scald [Rhynchosporium secalis (Oudem.) J.J. Davis] are the two most important foliar diseases of barley (Hordeum vulgare L.) in Tunisia. The use of cultivars with double resistance is the most effective method in controlling both diseases. A doubled‐haploid barley population derived from Tunisian cultivars was evaluated to both net blotch and scald during two growing seasons in the field. Mass disease index (MDI), area under the disease progress curve (AUDPC) and apparent infection type (r) were used to assess disease reaction. MDI of net blotch and scald reached up to 65% and 90% respectively. Least significant difference (LSD) test and comparison of the reaction of the doubled haploid (DH) lines to the overall population mean value were efficient in identifying lines with double resistance to both diseases. From the 59 DH lines screened, lines 21, 33, 37, 46 and 47 showed the best level of adult plant resistance to both diseases and may be used in a breeding program for diseases resistance. Interactions between R. secalis and P. teres were investigated at the level of the whole plant under variable epidemic conditions. Under low epidemic conditions, net blotch and scald developments were usually independent, but positively associated for tolerant lines for both diseases. Under high epidemic conditions, competition effects were obtained for susceptible and resistant genotypes. This competition seems to be an exploitation competition that is associated with decreasing resource availability as it occurs only with high levels of infestation or/and when susceptible lines are infected. This study demonstrates the variability of net blotch and scald interaction with epiphytotic conditions and group of resistance.  相似文献   

11.
12.
《Fungal biology》2014,118(5-6):516-523
The characterisation of the secretome of phytopathogenic fungi may contribute to elucidate the molecular mechanisms of pathogenesis. This is particularly relevant for Diplodia corticola, a fungal plant pathogen belonging to the family Botryosphaeriaceae, whose genome remains unsequenced. This phytopathogenic fungus is recognised as one of the most important pathogens of cork oak, being related to the decline of cork oak forests in the Iberian Peninsula.Unfortunately, secretome analysis of filamentous fungi is limited by the low protein concentration and by the presence of many interfering substances, such as polysaccharides, which affect the separation and analysis by 1D and 2D gel electrophoresis. We compared six protein extraction protocols concerning their suitability for further application with proteomic workflows. The protocols involving protein precipitation were the most efficient, with emphasis on TCA–acetone protocol, allowing us to identify the most abundant proteins on the secretome of this plant pathogen. Approximately 60 % of the spots detected were identified, all corresponding to extracellular proteins. Most proteins identified were carbohydrate degrading enzymes and proteases that may be related to D. corticola pathogenicity.Although the secretome was assessed in a noninfection environment, potential virulence factors such as the putative glucan-β-glucosidase, neuraminidase, and the putative ferulic acid esterase were identified.The data obtained forms a useful basis for a deeper understanding of the pathogenicity and infection biology of D. corticola. Moreover, it will contribute to the development of proteomics studies on other members of the Botryosphaeriaceae.  相似文献   

13.
Pyrenophora tritici‐repentis causes tan spot, an important foliar disease of wheat. The fungus produces multiple host‐specific toxins, including Ptr ToxB, a chlorosis‐inducing protein encoded by the ToxB gene. A homolog of ToxB is also found in avirulent isolates of the fungus. In order to improve understanding of the role of this homolog and evaluate the general pathogenic ability of P. tritici‐repentis, we compared the proteomes of avirulent race 4 and virulent race 5 isolates of the pathogen. Western blotting analysis revealed the presence of Ptr ToxB in spore germination and culture fluids of race 5 but not race 4. A comprehensive proteome‐level comparison by 2‐DE indicated 133 differentially abundant proteins in the secretome (29 proteins) and mycelium (104 proteins) of races 4 and 5, of which 63 were identified by MS/MS. A number of the proteins found to be up‐regulated in race 5 have been implicated in microbial virulence in other pathosystems, and included the secreted enzymes α‐mannosidase and exo‐β‐1,3‐glucanase, heat‐shock and BiP proteins, and various metabolic enzymes. These proteome‐level differences suggest a reduced general pathogenic ability in race 4 of P. tritici‐repentis, irrespective of toxin production. Such differences may reflect an adaptation to a saprophytic habit.  相似文献   

14.
Net blotch (caused by Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) are important foliar diseases of barley in the midwestern region of the USA. To determine the number and chromosomal location of Mendelian and quantitative trait loci (QTL) controlling resistance to these diseases, a doubled haploid population (Steptoe/Morex) was evaluated to the pathogens at the seedling stage in the greenhouse and at the adult plant stage in the field. Alleles at two or three unlinked loci were found to confer resistance to the net blotch pathogen at the seedling stage depending on how progeny exhibiting an intermediate infection response were classified. This result was corroborated in the quantitative analysis of the raw infection response data as 2 major QTL were identified on chromosomes 4 and 6M. A third QTL was also identified on chromosome 6P. Seven QTL were identified for net blotch resistance at the adult plant stage and mapped to chromosomes 1P, 2P, 3P, 3M, 4, 6P, and 7P. The 7 QTL collectively accounted for 67.6% of the phenotypic variance under a multiple QTL model. Resistance to the spot blotch pathogen was conferred by a single gene at the seedling stage. This gene was mapped to the distal region of chromosome 1P on the basis of both qualitative and quantitative data analyses. Two QTL were identified for spot blotch resistance at the adult plant stage: the largest QTL effect mapped to chromosome 5P and the other mapped to chromosome 1P near the seedling resistance locus. Together, the 2 QTL explained 70.1% of the phenotypic variance under a multiple QTL model. On the basis of the chromosomal locations of resistance alleles detected in this study, it should be feasible to combine high levels of resistance to both P. teres f. teres and C. sativus in barley cultivars.  相似文献   

15.
《Fungal biology》2014,118(9-10):785-791
A cellular proteomic analysis was performed on Trichoderma aggressivum f. europaeum. Thirty-four individual protein spots were excised from 2-D electropherograms and analysed by ESI-Trap Liquid Chromatography Mass Spectrometry (LC/MS). Searches of the NCBInr and SwissProt protein databases identified functions for 31 of these proteins based on sequence homology. A differential expression study was performed on the intracellular fraction of T. aggressivum f. europaeum grown in media containing Agaricus bisporus tissue and Phase 3 mushroom compost compared to a control medium. Differential expression was observed for seven proteins, three of which were upregulated in both treatments, two were down regulated in both treatments and two showed qualitatively different regulation under the two treatments. No proteins directly relating to fungal cell wall degradation or other mycoparasitic activity were observed. Functions of differentially produced intracellular proteins included oxidative stress tolerance, cytoskeletal structure, and cell longevity. Differential production of these proteins may contribute to the growth of T. aggressivum in mushroom compost and its virulence toward A. bisporus.  相似文献   

16.
Summary A locus, ompRS, controlling synthesis of outer membrane proteins was cloned from Erwinia carotovora subsp. carotovora (Ecc) by complementation of an Escherichia coli ompR—envZ mutant. The Ecc ompRS locus was both structurally and functionally similar to the ompR—envZ operon controlling porin gene expression in E. coli as shown by DNA hybridization and complementation of E. coli ompR and envZ mutants. Furthermore, introduction of ompRS into E. coli (ompR—envZ) strains restored the osmoregulation of the major outer membrane protein genes ompC and ompF Maxicell analysis of ompRS-carrying plasmids suggested that proteins similar in size to the E. coli ompR and envZ gene products were encoded by the Ecc ompR and ompS genes, respectively. Introduction of an ompRS transposon mutant onto the Ecc chromosome by marker exchange mutagenesis showed that ompRS is essential for production of a major outer membrane porin in Ecc. This mutational defect could be complemented by clones carrying Ecc ompRS or E. coli ompR envZ. The lack of the porin did not, however, compromise the virulence of these Ecc mutants.  相似文献   

17.
Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396‐9) and weakly (Vs06‐14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty‐five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC‐ESI‐MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant‐defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics‐based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.  相似文献   

18.
Chung WJ  Shu HY  Lu CY  Wu CY  Tseng YH  Tsai SF  Lin CH 《Proteomics》2007,7(12):2047-2058
The bacterium Xanthomonas campestris pathovar campestris (XCC) 17 is a local isolate that causes crucifer black rot disease in Taiwan. In this study, its proteome was separated using 2-DE and the well-resolved proteins were excised, trypsin digested, and analyzed by MS. Over 400 protein spots were analyzed and 281 proteins were identified by searching the MS or MS/MS spectra against the proteome database of the closely related XCC ATCC 33913. Functional categorization of the identified proteins matched 141 (50%) proteins to 81 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In addition, we performed a comparative proteome analysis of the pathogenic strain 17 and an avirulent strain 11A to reveal the virulence-related proteins. We detected 22 up-regulated proteins in strain 17 including the degrading enzymes EngXCA, HtrA, and PepA, which had been shown to have a role in pathogenesis in other bacteria, and an anti-host defense protein, Ohr. Thus, further functional studies of these up-regulated proteins with respect to their roles in XCC pathogenicity are suggested.  相似文献   

19.
Spring barley ( Hordeum vulgare L. cv. Scarlett) was grown at two CO2 levels (400 vs. 700 ppm) combined with two ozone regimes (ambient vs. double ambient) in climate chambers for four weeks, beginning at seedling emergence. Elevated CO2 concentration significantly increased aboveground biomass, root biomass, and tiller number, whereas double ambient ozone significantly decreased these parameters. These ozone-induced reductions in growth parameters were strongly overridden by 700 ppm CO2. The elevated CO2 level increased C : N ratio of the leaf tissue and leaf starch content but decreased leaf protein levels. Exposure to double ambient ozone did not affect protein content and C : N ratio but dramatically increased leaf starch levels at 700 ppm CO2. Resistance against Drechslera teres (Sacc.) Shoemaker was increased in leaves grown at double ambient ozone but was less obvious at 700 ppm than at 400 ppm CO2. Constitutive activities of beta-1,3-glucanase and chitinase were significantly higher in leaves grown at double ambient ozone compared to ambient ozone levels. The sum of methanol-soluble and alkali-released cell wall-bound aromatic metabolites (i.e., C-glycosylflavones and several structurally unidentified metabolites) and lignin contents did not show any treatment-dependent differences.  相似文献   

20.
Reactive oxygen species (ROS), including superoxide ( / ) and hydrogen peroxide (H2O2), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi‐biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of / to H2O2, regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi‐biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up‐regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild‐type plants, suggesting that cytosolic / contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi‐biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号