首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth factors, such as myostatin (Mstn), play an important role in regulating post-natal myogenesis. In fact, loss of Mstn has been shown to result in increased post-natal muscle growth through enhanced satellite cell functionality; while elevated levels of Mstn result in dramatic skeletal muscle wasting through a mechanism involving reduced protein synthesis and increased ubiquitin-mediated protein degradation. Here we show that miR-27a/b plays an important role in feed back auto-regulation of Mstn and thus regulation of post-natal myogenesis. Sequence analysis of Mstn 3′ UTR showed a single highly conserved miR-27a/b binding site and increased expression of miR-27a/b was correlated with decreased expression of Mstn and vice versa both in vitro and in mice in vivo. Moreover, we also show that Mstn gene expression was regulated by miR-27a/b. Treatment with miR-27a/b-specific AntagomiRs resulted in increased Mstn expression, reduced myoblast proliferation, impaired satellite cell activation and induction of skeletal muscle atrophy that was rescued upon either blockade of, or complete absence of, Mstn. Consistent with this, miR-27a over expression resulted in reduced Mstn expression, skeletal muscle hypertrophy and an increase in the number of activated satellite cells, all features consistent with impaired Mstn function. Loss of Smad3 was associated with increased levels of Mstn, concomitant with decreased miR-27a/b expression, which is consistent with impaired satellite cell function and muscular atrophy previously reported in Smad3-null mice. Interestingly, treatment with Mstn resulted in increased miR-27a/b expression, which was shown to be dependent on the activity of Smad3. These data highlight a novel auto-regulatory mechanism in which Mstn, via Smad3 signaling, regulates miR-27a/b and in turn its own expression. In support, Mstn-mediated inhibition of Mstn 3′ UTR reporter activity was reversed upon miR-27a/b-specific AntagomiR transfection. Therefore, miR-27a/b, through negatively regulating Mstn, plays a role in promoting satellite cell activation, myoblast proliferation and preventing muscle wasting.  相似文献   

2.
Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene’s proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.  相似文献   

3.
In this study iTRAQ was used to produce a highly confident catalogue of 542 proteins identified in porcine muscle (false positive<5%). To our knowledge this is the largest reported set of skeletal muscle proteins in livestock. Comparison with human muscle proteome demonstrated a low level of false positives with 83% of the proteins common to both proteomes. In addition, for the first time we assess variations in the muscle proteome caused by sexually dimorphic gene expression and diet dephytinization. Preliminary analysis identified 19 skeletal muscle proteins differentially expressed between male and female pigs (≥1.2‐fold, p<0.05), but only one of them, GDP‐dissociation inhibitor 1, was significant (p<0.05) after false discovery rate correction. Diet dephytinization affected expression of 20 proteins (p<0.05). This study would contribute to an evaluation of the suitability of the pig as a model to study human gender‐related differences in gene expression. Transgenic pigs used in this study might also serve as a useful model to understand changes in human physiology resulting from diet dephytinization.  相似文献   

4.
Aging skeletal muscle shows perturbations in metabolic functions. MicroRNAs have been shown to play a critical role in aging and metabolic functions of skeletal muscle. MicroRNA-34a (miR-34a) is implicated in the brain and cardiac aging, however, its role in aging muscle is unclear. We analyzed levels of miR-34a, ceramide kinase (CERK) and other insulin signaling molecules in skeletal muscle from old mice. In addition to in vivo model, levels of these molecules were also analyzed in myoblast derived from insulin resistant (IR) humans and C2C12 myoblasts overexpressing mir-34a. Our results show that miR-34a is elevated in the muscles of 2-year-old mice and in the myoblasts of IR humans. Overexpression of miR-34a in C2C12 myoblasts leads to alterations in the insulin signaling pathway, which were rescued by its antagonism. Our analyses revealed that miR-34a targets CERK resulting in ceramide accumulation, activation of PP2A and the pJNK pathway in muscle and C2C12 myoblasts. Also, myostatin (Mstn) levels were increased in 2-year-old mouse muscle and Mstn treatment upregulated miR-34a in C2C12 myoblasts. In addition, miR-34a expression and ceramide levels did not increase during aging in Mstn−/− mice muscle. In summary, we, therefore, propose that Mstn levels increase in aging muscle and upregulate miR-34a, which inhibits CERK resulting in increased ceramide levels. This ceramide accumulation activates PP2A and pJNK causing hypophosphorylation of AKT and hyperphosphorylation of IRS1 (Ser307), respectively, impairing insulin signaling pathway and eventually inhibiting the sarcolemma localization of GLUT4. These changes would result in reduced glucose uptake and insulin resistance. This study is the first to explain the phenomenon of ceramide accrual and impairment of insulin signaling pathway in aging muscle through a miR-34a based mechanism. In conclusion, our results suggest that Mstn and miR-34a antagonism can help ameliorate ceramide accumulation and loss of insulin sensitivity in aging skeletal muscle.  相似文献   

5.
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI?/?) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI?/? mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI?/? mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.  相似文献   

6.
7.
Aging is associated with a progressive loss of skeletal muscular function that often leads to progressive disability and loss of independence. Although muscle aging is well documented, the molecular mechanisms of this condition still remain unclear. To gain greater insight into the changes associated with aging of skeletal muscle, we performed quantitative proteomic analyses on young (6 months) and aged (27 months) mouse gastrocnemius muscles using mTRAQ stable isotope mass tags. We identified and quantified a total of 4585 peptides corresponding to 236 proteins (protein probability >0.9). Among them, 33 proteins were more than 1.5‐fold upregulated and 20 proteins were more than 1.5‐fold downregulated in aged muscle compared with young muscle. An ontological analysis revealed that differentially expressed proteins belonged to distinct functional groups, including ion homeostasis, energy metabolism, protein turnover, and Ca2+ signaling. Identified proteins included aralar1, β‐enolase, fatty acid‐binding protein 3, 3‐hydroxyacyl‐CoA dehydrogenase (Hadh), F‐box protein 22, F‐box, and leucine‐rich repeat protein 18, voltage‐dependent L‐type calcium channel subunit beta‐1, ryanodine receptor (RyR), and calsequestrin. Ectopic expression of calsequestrin in C2C12 myoblast resulted in decreased activity of nuclear factor of activated T‐cells and increased levels of atrogin‐1 and MuRF1 E3 ligase, suggesting that these differentially expressed proteins are involved in muscle aging.  相似文献   

8.
EVA1A is an autophagy‐related protein, which plays an important role in embryonic neurogenesis. In this study, we found that loss of EVA1A could decrease neural differentiation in the brain of adult Eva1a ?/? mice. To determine the mechanism underlying this phenotype, we performed label‐free quantitative proteomics and bioinformatics analysis using the brains of Eva1a ?/? and wild‐type mice. We identified 11 proteins that were up‐regulated and 17 that were down‐regulated in the brains of the knockout mice compared to the wild‐type counterparts. Bioinformatics analysis indicated that biological processes, including ATP synthesis, oxidative phosphorylation, and the TCA cycle, are involved in the EVA1A regulatory network. In addition, gene set enrichment analysis showed that neurodegenerative diseases, such as Alzheimer's disease and Huntington's disease, were strongly associated with Eva1a knockout. Western blot experiments showed changes in the expression of nicotinamide nucleotide transhydrogenase, an important mitochondrial enzyme involved in the TCA cycle, in the brains of Eva1a knockout mice. Our study provides valuable information on the molecular functions and regulatory network of the Eva1a gene, as well as new perspectives on the relationship between autography‐related proteins and neural differentiation.  相似文献   

9.
Collagen‐type‐II‐induced arthritis (CIA) is an autoimmune disease, which involves a complex host systemic response including inflammatory and autoimmune reactions. CIA is milder in CD38?/? than in wild‐type (WT) mice. ProteoMiner‐equalized serum samples were subjected to 2D‐DiGE and MS‐MALDI‐TOF/TOF analyses to identify proteins that changed in their relative abundances in CD38?/? versus WT mice either with arthritis (CIA+), with no arthritis (CIA?), or with inflammation (complete Freund's adjuvant (CFA)‐treated mice). Multivariate analyses revealed that a multiprotein signature (n = 28) was able to discriminate CIA+ from CIA? mice, and WT from CD38?/? mice within each condition. Likewise, a distinct multiprotein signature (n = 16) was identified which differentiated CIA+ CD38?/? mice from CIA+ WT mice, and lastly, a third multiprotein signature (n = 18) indicated that CD38?/? and WT mice could be segregated in response to CFA treatment. Further analyses showed that the discriminative power to distinguish these groups was reached at protein species level and not at the protein level. Hence, the need to identify and quantify proteins at protein species level to better correlate proteome changes with disease processes. It is crucial for plasma proteomics at the low‐abundance protein species level to apply the ProteoMiner enrichment. All MS data have been deposited in the ProteomeXchange with identifiers PXD001788, PXD001799 and PXD002071 ( http://proteomecentral.proteomexchange.org/dataset/PXD001788 , http://proteomecentral.proteomexchange.org/dataset/PXD001799 and http://proteomecentral.proteomexchange.org/dataset/PXD002071 ).  相似文献   

10.
SIRT7 is a class III histone deacetylase that is involved in numerous cellular processes. Only six substrates of SIRT7 have been reported thus far, so we aimed to systematically identify SIRT7 substrates using stable‐isotope labeling with amino acids in cell culture (SILAC) coupled with quantitative mass spectrometry (MS). Using SIRT7+/+ and SIRT7 ?/? mouse embryonic fibroblasts as our model system, we identified and quantified 1493 acetylation sites in 789 proteins, of which 261 acetylation sites in 176 proteins showed ≥2‐fold change in acetylation state between SIRT7?/? and SIRT7+/+ cells. These proteins were considered putative SIRT7 substrates and were carried forward for further analysis. We then validated the predictive efficiency of the SILAC–MS experiment by assessing substrate acetylation status in vitro in six predicted proteins. We also performed a bioinformatic analysis of the MS data, which indicated that many of the putative protein substrates were involved in metabolic processes. Finally, we expanded our list of candidate substrates by performing a bioinformatics‐based prediction analysis of putative SIRT7 substrates, using our list of putative substrates as a positive training set, and again validated a subset of the proteins in vitro. In summary, we have generated a comprehensive list of SIRT7 candidate substrates.  相似文献   

11.
Objective: The etiology of some obesity may involve adipocyte hyperplasia. However, the role of adipocyte number in establishing adipose mass is unclear. Cyclin‐dependent kinase inhibitor p27 regulates activity of cyclin/cyclin‐dependent kinase complexes responsible for cell cycle progression. This protein is critical for establishing adult adipocyte number, and p27 knockout increases adult adipocyte number. The SCF (for Skp1‐Cullin‐F‐box protein) complex targets proteins such as p27 for ubiquitin‐proteosome degradation; the F box protein S phase kinase‐associated protein 2 (Skp2), a component of the SCF complex, specifically recognizes p27 for degradation. We used Skp2 knockout (Skp2?/?) mice to test whether Skp2 loss decreased adipose mass and adipocyte number. Research Methods and Procedures: We measured body weight, adipose mass, adipocyte diameter and number, and glucose tolerance in wild‐type (WT), Skp2?/?, and p27?/?Skp2?/? mice. Mouse embryo fibroblasts (MEFs) from WT and Skp2?/? fetuses were differentiated to determine whether Skp2 directly affected adipogenesis. Results: Skp2?/? mice had a 50% decrease in both subcutaneous and visceral fat pad mass and adipocyte number; these decreases exceeded those in body weight, kidney, or muscle. To test the hypothesis that Skp2 effects on adipocyte number involved p27 accumulation, we used p27?/?Skp2?/? double knockout mice. The Skp2?/? decrements in adipocyte number and fat pad mass were totally reversed in p27?/?Skp2?/? mice. Adipogenesis was inhibited in MEFs from Skp2?/? vs. WT mice, and this inhibition was absent in MEFs from p27?/?Skp2?/? mice. Discussion: Our results indicate that Skp2 regulates adipogenesis and ultimate adipocyte number in vivo; thus, Skp2 may contribute to obesity involving adipocyte hyperplasia.  相似文献   

12.
Loss of SURF1, a Complex IV assembly protein, was reported to increase lifespan in mice despite dramatically lower cytochrome oxidase (COX) activity. Consistent with this, our previous studies found advantageous changes in metabolism (reduced adiposity, increased insulin sensitivity, and mitochondrial biogenesis) in Surf1?/? mice. The lack of deleterious phenotypes in Surf1?/? mice is contrary to the hypothesis that mitochondrial dysfunction contributes to aging. We found only a modest (nonsignificant) extension of lifespan (7% median, 16% maximum) and no change in healthspan indices in Surf1?/? vs. Surf1+/+ mice despite substantial decreases in COX activity (22%–87% across tissues). Dietary restriction (DR) increased median lifespan in both Surf1+/+ and Surf1?/? mice (36% and 19%, respectively). We measured gene expression, metabolites, and targeted expression of key metabolic proteins in adipose tissue, liver, and brain in Surf1+/+ and Surf1?/? mice. Gene expression was differentially regulated in a tissue‐specific manner. Many proteins and metabolites are downregulated in Surf1?/? adipose tissue and reversed by DR, while in brain, most metabolites that changed were elevated in Surf1?/? mice. Finally, mitochondrial unfolded protein response (UPRmt)‐associated proteins were not uniformly altered by age or genotype, suggesting the UPRmt is not a key player in aging or in response to reduced COX activity. While the changes in gene expression and metabolism may represent compensatory responses to mitochondrial stress, the important outcome of this study is that lifespan and healthspan are not compromised in Surf1?/? mice, suggesting that not all mitochondrial deficiencies are a critical determinant of lifespan.  相似文献   

13.
14.
Perlecan is a component of the basement membrane that surrounds skeletal muscle. The aim of the present study is to identify the role of perlecan in skeletal muscle hypertrophy and myostatin signaling, with and without mechanical stress, using a mouse model (Hspg2?/?-Tg) deficient in skeletal muscle perlecan. We found that myosin heavy chain (MHC) type IIb fibers in the tibialis anterior (TA) muscle of Hspg2?/?-Tg mice had a significantly increased fiber cross-sectional area (CSA) compared to control (WT-Tg) mice. Hspg2?/?-Tg mice also had an increased number of type IIx fibers in the TA muscle. Myostatin and its type I receptor (ALK4) expression was substantially decreased in the Hspg2?/?-Tg TA muscle. Myostatin-induced Smad activation was also reduced in a culture of myotubes from the Hspg2?/?-Tg muscle, suggesting that myostatin expression and its signaling were decreased in the Hspg2?/?-Tg muscle. To examine the effects of mechanical overload or unload on fast and slow muscles in Hspg2?/?-Tg mice, we performed tenotomy of the plantaris (fast) muscle and the soleus (slow) muscle. Mechanical overload on the plantaris muscle of Hspg2?/?-Tg mice significantly increased wet weights compared to those of control mice, and unloaded plantaris muscles of Hspg2?/?-Tg mice caused less decrease in wet weights compared to those of control mice. The decrease in myostatin expression was significantly profound in the overloaded plantaris muscle of Hspg2?/?-Tg mice, compared with that of control mice. In contrast, overloading the soleus muscle caused no changes in either type of muscle. These results suggest that perlecan is critical for maintaining fast muscle mass and fiber composition, and for regulating myostatin signaling.  相似文献   

15.
Colorectal cancer risk is increased when dietary folate intake is low, with or without a deficiency in methylenetetrahydrofolate reductase (MTHFR). We have observed that intestinal tumors are induced in mice fed low‐folate diets, and that tumor incidence is increased when these mice also have MTHFR deficiency. This study was undertaken to identify differentially expressed proteins in conditions favoring initial steps of murine carcinogenesis in normal preneoplastic intestine. We compared the proteome of BALB/c normal intestine in Mthfr+/+ mice fed control diets for 1 year (low susceptibility to tumorigenesis) with the proteome of Mthfr+/? animals fed low folate diets (higher tumor susceptibility). Our data suggest that the NuRD complex, KRAS‐related proteins, the protein synthetic machinery, and fatty acid‐related metabolic proteins are upregulated in the early stages of tumorigenesis. These proteins may serve as biomarkers or targets for colorectal cancer diagnosis or therapy.  相似文献   

16.
The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein‐by‐protein basis. The ability to measure protein synthesis and degradation rates on a proteome‐wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well‐established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L‐leucine was replaced with a stable isotope labelled analogue ([2H7]L‐leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates.  相似文献   

17.
18.
Excessive action of angiotensin II on mitochondria has been shown to play an important role in mitochondrial dysfunction, a common feature of atherogenesis and kidney injury. Angiotensin-(1–7)/Mas receptor axis constitutes a countermeasure to the detrimental effects of angiotensin II on AT1 receptors. The aim of the study was to assess the effects of angiotensin-(1–7) peptidomimetic AVE0991 on the kidney mitochondrial proteome in widely used animal model of atherosclerosis (apoE?/? mice). Proteins changed in apoE?/? mice belonged to the groups of antioxidant enzymes, apoptosis regulators, inflammatory factors and metabolic enzymes. Importantly, AVE0991 partially reversed atherosclerosis-related changes in apoE?/? mice.  相似文献   

19.
Redundancy of myostatin and growth/differentiation factor 11 function   总被引:1,自引:0,他引:1  

Background  

Myostatin (Mstn) and growth/differentiation factor 11 (Gdf11) are highly related transforming growth factor β (TGFβ) family members that play important roles in regulating embryonic development and adult tissue homeostasis. Despite their high degree of sequence identity, targeted mutations in these genes result in non-overlapping phenotypes affecting distinct biological processes. Loss of Mstn in mice causes a doubling of skeletal muscle mass while loss of Gdf11 in mice causes dramatic anterior homeotic transformations of the axial skeleton, kidney agenesis, and an increase in progenitor cell number in several tissues. In order to investigate the possible functional redundancy of myostatin and Gdf11, we analyzed the effect of eliminating the functions of both of these signaling molecules.  相似文献   

20.
Jing L  Parker CE  Seo D  Hines MW  Dicheva N  Yu Y  Schwinn D  Ginsburg GS  Chen X 《Proteomics》2011,11(14):2763-2776
Due to the lack of precise markers indicative of its occurrence and progression, coronary artery disease (CAD), the most common type of heart diseases, is currently associated with high mortality in the United States. To systemically identify novel protein biomarkers associated with CAD progression for early diagnosis and possible therapeutic intervention, we employed an iTRAQ‐based quantitative proteomic approach to analyze the proteome changes in the plasma collected from a pair of wild‐type versus apolipoprotein E knockout (APOE?/?) mice which were fed with a high fat diet. In a multiplex manner, iTRAQ serves as the quantitative ‘in‐spectra’ marker for ‘cross‐sample’ comparisons to determine the differentially expressed/secreted proteins caused by APOE knock‐out. To obtain the most comprehensive proteomic data sets from this CAD‐associated mouse model, we applied both MALDI and ESI‐based mass spectrometric (MS) platforms coupled with two different schemes of multidimensional liquid chromatography (2‐D LC) separation. We then comparatively analyzed a series of the plasma samples collected at 6 and 12 wk of age after the mice were fed with fat diets, where the 6‐ or 12‐wk time point represents the early or intermediate phase of the fat‐induced CAD, respectively. We then categorized those proteins showing abundance changes in accordance with APOE depletion. Several proteins such as the γ and β chains of fibrinogen, apolipoprotein B, apolipoprotein C‐I, and thrombospondin‐4 were among the previously known CAD markers identified by other methods. Our results suggested that these unbiased proteomic methods are both feasible and a practical means of discovering potential biomarkers associated with CAD progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号