首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

2.
3.
Dax1 regulates testis cord organization during gonadal differentiation   总被引:5,自引:0,他引:5  
Mutations of the DAX1 nuclear receptor gene cause adrenal hypoplasia congenita, an X-linked disorder characterized by adrenal insufficiency and hypogonadotropic hypogonadism. Targeted deletion of Dax1 in mice also reveals primary testicular dysgenesis, which is manifest by obstruction of the rete testis by Sertoli cells and hyperplastic Leydig cells, leading to seminiferous tubule dilation and degeneration of germ cells. Because Dax1 is expressed early in gonadal development, and because Sertoli and Leydig cells are located ectopically in the adult, we hypothesized that these testis abnormalities are the result of an early defect in testis development. In Dax1(-/Y) males, the gonad develops normally until 12.5 dpc. However, by 13.5 dpc, the testis cords are disorganized and incompletely formed in Dax1-deficient mice. The number of germ and Sertoli cells is unchanged, and the expression of Sertoli-specific markers appears to be normal. However, the number of peritubular myoid cells, which normally surround the testis cords, is reduced. BrdU labeling of peritubular myoid cells is low, consistent with decreased proliferation. The basal lamina produced by peritubular myoid and Sertoli cells is disrupted, leading to open and incompletely formed testis cords. Leydig cells, which normally reside in the peritubular space and extend from the coelomic surface to the dorsal surface of the gonad, are restricted to the coelomic surface of Dax1-deficient testis. We conclude that Dax1 plays a crucial role in testis differentiation by regulating the development of peritubular myoid cells and the formation of intact testis cords. The developmental abnormalities in the Dax1-deficient testis lay the foundation for gonadal dysgenesis and infertility in adult mice and, potentially in humans with DAX1 mutations.  相似文献   

4.
《Reproductive biology》2022,22(4):100684
The reconstruction of a tubule-like structure in vitro has provided a promising system to analyze factors that drive morphogenesis and the underlying mechanisms. In this study, we took advantage of the inhibitor cyclopamine and a smoothened agonist to detect the role of the Dhh signaling pathway in the reconstructed tubule-like structure. Sertoli cells did not show polarity, rounded peritubular myoid cells and scattered Leydig cells were observed, combined with less laminin and lower proliferation of Leydig, peritubular myoid, germ, and Sertoli cells. However, in the presence of SAG, elongated peritubular myoid cells gathered at the bottom of polarized Sertoli cells, and most of the Leydig cells gathered at the outer part of the elongated peritubular myoid cells. Moreover, SAG promoted the secretion of laminin, assisting in the formation of the basal membrane and promoting the proliferation of Leydig, peritubular myoid, and germ cells. The level of Gli1 was significantly downregulated when treated with cyclopamine, whereas it was significantly upregulated when treated with SAG. These results indicate that the Dhh signaling pathway regulates the reconstruction of tubule-like structures by regulating the expression of Gli1.  相似文献   

5.
A new method for the separation of germ cells from somatic cells in the mouse testis was accomplished by making use of the differences in cell surface affinity for a lectin, peanut agglutinin (PNA). The separation procedure was based on the specific presence of PNA receptor on testicular germ cells and its absence on somatic cells, such as Leydig, Sertoli and peritubular cells. As a result, more than 99% of cells in PNA receptor-positive (PNA+) fractions were identified as germ cells by immunoperoxidase reaction with specific antiserum to mouse testicular germ cells. In contrast, Leydig cells were enriched in PNA receptor-negative (PNA-) fractions, i.e., 65% of cells in these fractions were cytochemically stained for 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity.  相似文献   

6.
The objective of the present studies was to determine the localization of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in testicular tissue collected from male alpacas at 12 and 24 months of age. In the testes of 12-month-old alpacas, positive staining for EGF was not detected. EGFR was localized to Leydig cells within the 12-month-old alpaca testis, but staining was absent within seminiferous tubules. At 24 months of age, EGF was localized to Leydig cells, peritubular myoid cells, Sertoli cells and germ cells of the alpaca testis, with a preferential adluminal compartment staining within the seminiferous tubules. EGFR was also localized to the Leydig cells, peritubular myoid cells, Sertoli cells and germ cells within the 24-month-old alpaca testis, but staining within the tubules was primarily within the basal compartment. Results indicate distinct temporal and spatial regulation of EGF and EGFR in the alpaca testis and support a potential role for EGF and its related ligands in alpaca testis development and spermatogenesis.  相似文献   

7.
Data from several experimental approaches have been reviewed and the findings clearly indicate the existence of multiple interactions between testicular cells and the potential role of these interactions in the paracrine control of testicular functions. Both testicular interstitial fluid and spent media from cultured Sertoli cells had an acute steroidogenic effect on Leydig cells, and this effect is not species specific. The secretion of this steroidogenic factor(s), which is probably a protein, is enhanced by previous FSH treatment of Sertoli cells. Coculture for 2-3 days of pig Leydig cells with homologous or heterologous Sertoli cells enhances Leydig cell specific functions (hCG receptor number and hCG responsiveness) and induces Leydig cell hypertrophy. A similar but less pronounced trophic effect is seen when Leydig cells are cultured with spent media from Sertoli cells cultured in the presence of FSH and high concentrations of insulin, but the spent media from Sertoli cells cultured in the absence of these two hormones inhibits Leydig cell specific functions. Somatomedin-C might play an important role in the positive trophic effect of Sertoli cells on Leydig cells, since this peptide is secreted by Sertoli cells and it has trophic effects on the specific function of Leydig cells. Moreover, Sertoli cells, probably through a diffusible factor and cell-to-cell contacts, control the multiplication, meiotic reduction and maturation of germ cells. In turn, the activity of Sertoli cells is modulated by the stage of neighbouring germ cells. Thus, if a normal Sertoli cell function (which depends not only on FSH but also on Leydig and myoid cell secretory products) is an absolute requirement for germ cell multiplication and maturation, these cells, in turn, cyclically regulate Sertoli cell function and through these cells the size and probably the function of Leydig cells.  相似文献   

8.
In the present study we have examined the cellular localization and developmental changes of mRNAs for retinoid-binding proteins in rat testis. We demonstrate that mRNA (0.7 kb) for cellular retinol-binding protein (CRBP) is expressed only in Sertoli cells and peritubular cells. The mRNA for CRBP could not be detected in other testicular cells. In contrast, mRNA for cellular retinoic acid-binding protein (CRABP) was detected primarily in germ cells and to a small extent in tumor Leydig cells. The mRNA for CRABP in germ cells revealed distinct size heterogeneity and three distinct mRNA species were observed (1.0, 1.8, and 1.9 kb), in contrast to previous data for somatic cells where only the 1.0-kb mRNA has been reported. Messenger RNAs for retinoic acid receptor-alpha (RAR alpha) were detected in both somatic and haploid germ cells. The highest level of RAR alpha was seen in Sertoli cells, round spermatids, and tumor Leydig cells. Lower, but distinct, levels were observed in peritubular cells. Furthermore, we observed germ cell-specific species of RAR alpha mRNA (4 kb and approximately 7 kb). The smallest mRNA for RAR alpha (2.7 kb) in somatic cells was absent in germ cells. The levels of mRNAs for the various retinoid-binding proteins in whole testis obtained from rats of various ages confirmed this cellular localization. The mRNAs for CRBP, the small molecular size (2.7 kb) mRNA for RAR alpha (localized to somatic cells), and the 1-kb mRNA for CRABP showed an age-dependent decrease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
GP90-MC301, a 90-kDa glycoprotein recognized by the monoclonal antibody MC301, is a reliable stage-specific marker for preleptotene to pachytene spermatocytes in adult rat testes. In this study we confirmed that the glycoprotein is also useful as a marker for germ cells in prenatal and postnatal testes. Immunohistochemical analysis showed a dramatic change in GP90-MC301 expression in germ cells during testis development. Strong expression was detected in primordial germ cells at embryonic day (E) 13 and in gonocytes at E16, and the expression was then markedly reduced at around the time (E18) gonocytes undergo G1/G0 arrest, and was not restored in gonocytes or spermatogonia afterward. Thereafter, it reappeared in primary spermatocytes in the prepubertal period. Testicular somatic cells such as Sertoli cells, Leydig cells, and peritubular myoid cells expressed GP90-MC301 during specific periods which were largely correlated with periods of active proliferation of these testicular somatic cells. Western blotting showed that GP90-MC301 was expressed during testis development without a change in its molecular size. Thus, GP90-MC301 is potentially useful for the analysis of not only spermatogenesis but also early testis development.  相似文献   

10.
A monoclonal antibody (MAb) raised against human sperm protein, designated YWK-II, was used to determine the distribution of antigens in rat spermatozoa and rat testicular germ cells. By an indirect immunofluorescent method, the antibody localized over the rat spermatozoal head, except for the postacrosomal region. In paraffin sections of adult and immature rat testis, germ cells, at every developmental stage, and Sertoli cells stained, while interstitial cells and peritubular myoid cells remained unstained. When cocultures of Sertoli and germ cells were tested, only the germ cells stained intensely. Sertoli cells and peritubular myoid cells in cultures did not stain. In the epididymal sections, strong staining occurred with spermatozoa in the lumen and epididymal epithelial cells, with moderate staining in the myoid layers of epididymis. To determine the sperm antigen interacting with the YWK-II antibody, rat spermatozoa proteins were prepared and analyzed by an immunoblot technique. The monoclonal antibody interacted with a single protein, with an estimated molecular weight of 115,000, present in the cauda epididymal spermatozoa. Among the proteins of the caput epididymal spermatozoa, however, the antibody interacted with a major and a minor band with molecular weights of 115,000 and 88,000, respectively. On the other hand, with proteins prepared from the membrane fraction of adult and immature rat testis, the antibody reacted with two bands with estimated molecular weights of 88,000 and 115,000. In the lysate prepared from germ cells dissociated from Sertoli-germ cell cocultures, the antibody recognized only the 88,000 protein. The present results show that the YWK-II MAb interacts with two proteins with different molecular weights. The amount of the interacting proteins in spermatozoa varied with their location within the epididymis.  相似文献   

11.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

12.
We report the immortalization, using the SV40 large T antigen, of all the cell types contributing to a developing seminiferous tubule in the mouse testis. Sixteen peritubular, 22 Leydig, 8 Sertoli, and 1 germ cell line have been established and cultured successfully for 90 generations in a period of 2.5 years. Immortalized peritubular cells were identified by their spindle-like appearance, their high expression of alkaline phosphatase, and their expression of the intermediary filament desmin. They also produce high amounts of collagen. Immortalized Leydig cells are easily identifiable by the accumulation of lipid droplets in their cytoplasm and the production of the enzyme 3-beta-hydroxysteroid dehydrogenase. Some Leydig cell lines also express LH receptors. The immortalized Sertoli cells are able to adopt their typical in vivo columnar appearance when cultured at high density. They exhibit a typical indented nucleus and cytoplasmic phagosomes. Some Sertoli cell lines also express FSH receptors. A germ cell line (GC-1spg) was established that corresponds to a stage between spermatogonia type B and primary spermatocyte, based on its characteristics in phase contrast and electron microscopy. This cell line expresses the testicular cytochrome ct and lactate dehydrogenase-C4 isozyme. These four immortalized cell types, when plated together, are able to reaggregate and form structures resembling two-dimensional spermatogenic tubules in vitro. When only the immortalized somatic cells are cocultured, the peritubular and Sertoli cells form cord-like structures in the presence of Leydig cells. Fresh pachytene spermatocytes cocultured with the immortalized somatic cells integrate within the cords and are able to survive for at least 7 days. The ability to perform coculture experiments with immortalized testicular cell lines represents an important advancement in our ability to study the nature of cell-cell and cell-matrix interactions during spermatogenesis and testis morphogenesis.  相似文献   

13.
Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH) acts through receptors (FSHR) on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR) on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or specifically on the Sertoli cells (SCARKO mice). Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control). Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.  相似文献   

14.
In the human fetal testis, germ cells that have migrated to the genital ridges become enclosed within testicular cords by 8 wk of gestation. Most papers refer to all types of germ cells as being "gonocytes" or "prespermatogonia," giving the impression that they are identical. Detailed morphological studies, however, have suggested a heterogeneous population. We have used single, double, and triple immunohistochemistry to evaluate the differentiation of cells within fetal testes recovered during the first (7-9 wk) and second (14-19 wk) trimesters. In the first trimester, differentiation of Sertoli cells preceded the formation of testicular cords and the differentiation of interstitial (Leydig, peritubular myoid) cells. Immunostaining for CHK2, C-KIT, placental alkaline phosphatase, PCTAIRE-1, and MAGE-A4 revealed that the proportion of germ cells expressing each of these proteins was correlated with gestational age. Expression of the pluripotency marker OCT4 was restricted to a population of small, round germ cells. Three types of germ cell were identified, and we propose that these should be known as gonocytes (OCT4pos/C-KITpos/MAGE-A4neg), intermediate germ cells (OCT4low/neg/C-KITneg/MAGE-A4neg), and prespermatogonia (OCT4neg/C-KITneg/MAGE-A4pos). In the first trimester, most germ cells had a gonocyte phenotype; however, from 18 wk of gestation, prespermatogonia were the most abundant cell type. These data provide evidence for the functional differentiation of human testicular germ cells during the second trimester of pregnancy, and they argue against these germ cells being considered as a homogeneous population, as in rodents.  相似文献   

15.
The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.  相似文献   

16.
Testicular development is a complicated process involving differentiation and arrangement of several cell types. To analyze the process of testicular organization we examined the sequence of the appearance of testicular structures induced in fetal ovaries following transplantation. Fetal mouse ovaries on the twelfth day of gestation were transplanted beneath the kidney capsules of adult male mice. They continued to develop morphologically as ovaries until the eleventh day after transplantation, when seminiferous cord formation and testosterone production began in addition to follicle development (ovotestes). Between the eleventh and fourteenth day after transplantation, ovarian grafts frequently contained transitional structures consisting of Sertoli cells, pregranulosa cells, a third type of cells which show intermediate characteristics between Sertoli and pregranulosa cells, and oocytes enclosed by common basal lamina. Leydig cells or peritubular myoid cells were not found in the transitional area, whereas these cells were present around seminiferous cords composed only of Sertoli cells. Oocytes were absent or degenerated in the well-developed seminiferous cords. The present findings suggest that, in ovarian grafts, pregranulosa cells can differentiate into Sertoli cells, which are responsible for the organization of the seminiferous cords, degeneration of oocytes, and differentiation of other testicular somatic cell types.  相似文献   

17.
Cimetidine has caused dysfunction in the male reproductive system. In the rat testis, intratubular alterations and loss of peritubular tissue due to peritubular myoid cell death by apoptosis have been recently shown. Thus, the aim of this study is to evaluate which cells of the seminiferous epithelium have been affected and/or died by apoptosis after the treatment with cimetidine. For this purpose, an experimental group containing five male albino Wistar rats received intraperitoneal injections of cimetidine (50 mg/kg body weight) during 52 days. The testes were fixed with 4% buffered formaldehyde and were embedded in paraffin. For detection of DNA breaks (apoptosis) in the cells of the seminiferous epithelium, the testicular sections were treated by the TUNEL method (Apop-Tag Plus Peroxidase Kit). In the tubules affected by cimetidine, altered peritubular tissue, including the presence of TUNEL labeling in the myoid peritubular cells, were usually found. In these tubules, the seminiferous epithelium exhibited low density of germ cells and TUNEL-positive labeling in the germ cells of the basal compartment. The concomitant staining in both germ cells of the basal compartment and late spermatids suggest a sensitivity of these cells in the damaged tubules. Besides germ cells, TUNEL-positive Sertoli cells were also found in the injured seminiferous tubules. Thus, a relationship between dying germ cells and Sertoli cell damage and/or death must be considered in tubules where peritubular tissue has been affected by toxicants.  相似文献   

18.
Immature rat Sertoli cells aggregate and form tubule-like structures when cultured on a monolayer of peritubular myoid cells. In this study, differential gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells were examined. One of the cDNA clones isolated showed high homology to calcyclin and a microvascular differentiation gene, CEC5, which was reported to be highly homologous to CASK, a membrane-associated guanylate kinase homolog. Sequencing and mRNA analysis of rat calcyclin demonstrated that the gene was differentially expressed and was found only in peritubular cells and cocultures with increased levels. In contrast, CASK was expressed by Sertoli cells, peritubular cells, and cocultures, whereas CEC5 was never found in the testicular somatic cells. Our findings point to a paracrine regulation of calcyclin expression in testicular peritubular fibroblasts which seems to be related to tubular growth.  相似文献   

19.
We have previously reported metabolic cooperation between Sertoli and peritubular myoid cells in terms of synthesis of one of the main testicular extracellular matrix (ECM) constituents, glycosaminoglycans (GAG). This study concerns Sertoli cell ECM-peritubular myoid cell interactions in terms of GAG synthesis. We have examined the responses of hormones and other regulatory agents such as a combination of follicle-stimulating hormone (FSH), insulin, retinol, and testosterone (FIRT) on peritubular myoid cells, and tested if Sertoli cell ECM or serum factor substitute for the stimulation by FIRT. Testicular peritubular myoid cells cultured on Sertoli cell ECM showed significant increases in the levels of cell- and ECM-associated GAG over that when cultured on uncoated plastic. This indicates a specific cell-substratum interaction between Sertoli cell ECM and peritubular myoid cells in the testis in terms of GAG synthesis. Moreover, in terms of cell-associated GAG synthesis, peritubular myoid cells cultured on Sertoli cell ECM or on plastic in the presence of serum substituted for the stimulatory response of FIRT on peritubular myoid cells cultured on uncoated plastic. The data are discussed in relation to the possible role of cell-substratum interaction in maintaining peritubular myoid cell functions. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The levels of IL-1alpha, IL-1beta and IL-1Ra were higher in homogenates of testicular tissue from sexually immature than those from mature mice. Immunohistochemical staining of testicular tissues from sexually immature and adult mice show that differentiated germ cells express higher levels of IL-1alpha compared to Sertoli cells and Leydig cells/interstitial cells. Peritubular cells of sexually immature and adult mice did not express IL-1alpha. Testicular tissue cells of adult mice showed high levels of expression of IL-1beta, mainly in the cytoplasm and nucleus of the spermatogonia and in spermatocytes. Sertoli cells and Leydig/interstitial cells were also highly stained for IL-1beta. However, peritubular cells did not express IL-1beta. On the other hand, testicular tissue cells from sexually immature mice, showed high levels of IL-1beta, mainly in spermatocytes. Spermatogonia showed low levels of IL-1beta expression. Also, high levels of IL-1beta expression were detected in Leydig/interstitial cells. Peritubular cells clearly showed IL-1beta expression. Testicular tissue cells from adult mice, showed IL-1Ra expression in spermatogonia, Sertoli and Leydig/interstitial cells. IL-1Ra expression was clearly present in the Golgi apparatus of spermatogonia and Sertoli cells. However, peritubular cells did not show IL-1Ra expression. Testicular tissue cells from sexually immature mice, also showed high levels of IL-1Ra expression mainly in the cytoplasm and nucleus of the spermatogonia and Sertoli cells. In addition, Leydig/interstitial cells and peritubular cells also expressed IL-1Ra. Our results demonstrate, for the first time, the expression of IL-1beta in germ and Sertoli cells, and IL-1Ra in Leydig/interstitial cells of testicular tissues from adult and sexually immature mice, under in vivo conditions. In addition, the relative elevated levels of the IL-1 system in the testis of immature mice compared to mature mice may indicate its involvement in the spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号