首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low‐ and high‐grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low‐grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma‐specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC‐MS/MS. The identified proteins from the two cell types were quantified using label‐free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin‐based immunosorbent assay.  相似文献   

2.
To screen for glycoproteins showing aberrant sialylation patterns in sera of cancer patients and apply such information for biomarker identification, we performed SELDI‐TOF MS analysis coupled with lectin‐coupled ProteinChip arrays (Jacalin or SNA) using sera obtained from lung cancer patients and control individuals. Our approach consisted of three processes (i) removal of 14 abundant proteins in serum, (ii) enrichment of glycoproteins with lectin‐coupled ProteinChip arrays, and (iii) SELDI‐TOF MS analysis with acidic glycoprotein‐compatible matrix. We identified 41 protein peaks showing significant differences (p<0.05) in the peak levels between the cancer and control groups using the Jacalin‐ and SNA‐ProteinChips. Among them, we identified loss of Neu5Ac (α2,6) Gal/GalNAc structure in apolipoprotein C‐III (apoC‐III) in cancer patients through subsequent MALDI‐QIT‐TOF MS/MS. Furthermore, subsequent validation experiments using an additional set of 60 lung adenocarcinoma patients and 30 normal controls demonstrated that there is a higher frequency of serum apoC‐III with loss of α2,6‐linkage Neu5Ac residues in lung cancer patients compared to controls. Our results have demonstrated that lectin‐coupled ProteinChip technology allows the high‐throughput and specific recognition of cancer‐associated aberrant glycosylations, and implied a possibility of its applicability to studies on other diseases.  相似文献   

3.
The isolation and analysis of glycoproteins by coupling lectin affinity chromatography with MS has emerged as a powerful strategy to study the glycoproteome of mammalian cells. However, this approach has not been used extensively for the analysis of plant glycoproteins. As with all eukaryotes, N-glycosylation is a common post-translational modification for plant proteins traveling through the secretory pathway. Many such proteins are destined for the cell wall, or apoplast, where they play important roles in processes such as modifying cell wall structure, sugar metabolism, signaling, and defense against pathogens. Here, we describe a strategy to enrich for and identify secreted plant proteins based on affinity chromatography using the lectin Concanavalin A and two-dimensional liquid chromatography, together with matrix-assisted laser desorption/ionization MS analysis. The value of this approach is illustrated through the characterization of glycoproteins that are expressed in ripe tomato (Solanum lycopersicum) fruit, a developmental stage that is fundamentally linked with significant changes in cell wall structure and composition. This glycoprotein trap strategy allowed the isolation of a sub-proteome with an extremely high proportion of proteins that are predicted to be resident in the cell wall or secretory pathway, and the identification of new putative cell wall proteins.  相似文献   

4.
To identify and characterize a serologic glycoprotein biomarker for hepatocellular carcinoma (HCC), multi‐lectin affinity chromatography was used to isolate intracellular N‐linked glycoprotein fractions from five paired non‐tumor and tumor tissues. From the series of 2‐D DIGE targeted differentially expressed N‐linked glycoproteins, we identified human liver carboxylesterase 1 (hCE1), which was remarkably down‐regulated in tumor tissues, a finding confirmed by Western blot, a quantitative real‐time RT‐PCR, and immunohistochemical staining of non‐tumor and tumor tissues from total 58 HCC patients. To investigate whether hCE1 is also present in human plasma, we employed a magnetic bead‐based immunoprecipitation followed by nano‐LC‐MS/MS analysis, and we found for the first time that hCE1 is present in human plasma as opposed to that in liver tissues. That is, from normalization of hCE1 signal by the immunoprecipitation and Western blot analysis, hCE1 levels were increased in plasma specimens from HCC patients than in plasma from other disease patient groups (e.g. liver cirrhosis, chronic hepatitis, cholangiocarcinoma, stomach cancer, and pancreatic cancer). From the receiver operating characteristic analysis in HCC, both sensitivity and specificity were shown to be greater than 70.0 and 85.0%, respectively. Thus, the high‐resolution proteomic approach demonstrates that hCE1 is a good candidate for further validation as a serologic glycoprotein biomarker for HCC.  相似文献   

5.
Glycans are cell-type-specific, posttranslational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high-mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low nanogram per milliliter levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines.  相似文献   

6.
Aberrant glycosylation of proteins is a hallmark of tumorigenesis and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is noninvasive and technically straightforward, and the sample collection and storage is relatively easy. Although differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimized a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analyzed with liquid chromatography–tandem mass spectrometry (LC–MS/MS) to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.  相似文献   

7.
Oviductal fluid (ODF) proteins modulate and support reproductive processes in the oviduct. In the present study, proteins involved in the biological events that precede fertilization have been identified in the rabbit ODF proteome, isolated from the ampulla and isthmus of the oviduct at different time points within 8 h after intrauterine insemination. A workflow is used that integrates lectin affinity capture with stable‐isotope dimethyl labeling prior to nanoLC‐MS/MS analysis. In total, over 400 ODF proteins, including 214 lectin enriched glycoproteins, are identified and quantified. Selected data are validated by Western blot analysis. Spatiotemporal alterations in the abundance of ODF proteins in response to insemination are detected by global analysis. A subset of 63 potentially biologically relevant ODF proteins is identified, including extracellular matrix components, chaperones, oxidoreductases, and immunity proteins. Functional enrichment analysis reveals an altered peptidase regulator activity upon insemination. In addition to protein identification and abundance changes, N‐glycopeptide analysis further identifies 281 glycosites on 199 proteins. Taken together, these results show, for the first time, the evolving oviductal milieu early upon insemination. The identified proteins are likely those that modulate in vitro processes, including spermatozoa function.  相似文献   

8.
Site‐specific chemical cross‐linking in combination with mass spectrometry analysis has emerged as a powerful proteomic approach for studying the three‐dimensional structure of protein complexes and in mapping protein–protein interactions (PPIs). Building on the success of MS analysis of in vitro cross‐linked proteins, which has been widely used to investigate specific interactions of bait proteins and their targets in various organisms, we report a workflow for in vivo chemical cross‐linking and MS analysis in a multicellular eukaryote. This approach optimizes the in vivo protein cross‐linking conditions in Arabidopsis thaliana, establishes a MudPIT procedure for the enrichment of cross‐linked peptides, and develops an integrated software program, exhaustive cross‐linked peptides identification tool (ECL), to identify the MS spectra of in planta chemical cross‐linked peptides. In total, two pairs of in vivo cross‐linked peptides of high confidence have been identified from two independent biological replicates. This work demarks the beginning of an alternative proteomic approach in the study of in vivo protein tertiary structure and PPIs in multicellular eukaryotes.  相似文献   

9.
A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.  相似文献   

10.
The glycoproteins of the membranes of bovine chromaffin granules were characterized by two polyacrylamide gel electrophoresis systems. Five components (I-V) were demonstrated with apparent molecular weights ranging in the unreduced form from 45,000 to 150,000. Glycoprotein I was identified as the enzyme dopamine β-hydroxylase. Four of these glycoproteins (with the exception of component IV) were apparently also present in the membranes of pig and horse chromaffin granules. The soluble proteins of chromaffin granules contained at least three glycoproteins. Only glycoprotein I (dopamine β-hydroxylase) was present both in the soluble content and in the membranes of chromaffin granules. Affinity chromatography with lectins demonstrated that from the soluble proteins only dopamine β-hydroxylase was adsorbed by concanavalin A, whereas none of these proteins reacted with wheat germ lectin and Ricinus communis agglutinin. Three membrane proteins including dopamine β-hydroxylase and glycoprotein II as major components were adsorbed by concanavalin A, whereas wheat germ lectin bound only component II and a small amount of component III. By electron microscopy it was demonstrated that concanavalin A did not bind to intact chromaffin granules whereas ruthenium red and cationized ferritin did. Isotope labelling after galactose oxidase treatment revealed that at least the carbohydrate portion of the major glycoproteins is present on the inner side of the granule membranes facing the content.  相似文献   

11.
Boric acid gel enrichment of glycosylated proteins in human wound fluids   总被引:1,自引:0,他引:1  
The enrichment of glycosylated proteins by glycocapturing materials plays a pivotal role for the investigation of polysaccharide containing proteins in disease pathogenesis. Hence, we investigated a boric acid gel as a binding material for glycoprotein enrichment. The bovine proteins alpha-1-acid-glycoprotein (A1AG) and alpha-2-HS-glycoprotein (fetuin A) were spiked in human chronic wound fluids and were subsequently enriched by a boric acid gel affinity chromatography (BAGAC). The enrichment efficiency was evaluated by western blot analysis and mass spectrometry. Additionally, glycoproteins of human wound fluids from diabetes mellitus patients with chronic foot ulcers were analyzed after BAGAC enrichments. In total 104 glycoproteins were identified, with reported glycosylation sites. 60 proteins were detected in at least 2 out of 3 biological replicates and were used for quantitative analysis between the bound and unbound fractions. Almost 80% of these glycoproteins were more prominent in the bound fraction. Only 2 glycoproteins revealed higher spectral counts in the flow through fraction compared to the bound fraction. These findings demonstrate the capability of the BAGAC material to enrich glycosylated proteins from complex human wound fluids.  相似文献   

12.
Glycosylation is one of the most abundant protein posttranslational modifications. Protein glycosylation plays important roles not only in eukaryotes but also in prokaryotes. To further understand the roles of protein glycosylation in prokaryotes, we developed a lectin binding assay to screen glycoproteins on an Escherichia coli proteome microarray containing 4,256 affinity-purified E.coli proteins. Twenty-three E.coli proteins that bound Wheat-Germ Agglutinin (WGA) were identified. PANTHER protein classification analysis showed that these glycoprotein candidates were highly enriched in metabolic process and catalytic activity classes. One sub-network centered on deoxyribonuclease I (sbcB) was identified. Bioinformatics analysis suggests that prokaryotic protein glycosylation may play roles in nucleotide and nucleic acid metabolism. Fifteen of the 23 glycoprotein candidates were validated by lectin (WGA) staining, thereby increasing the number of validated E. coli glycoproteins from 3 to 18. By cataloguing glycoproteins in E.coli, our study greatly extends our understanding of protein glycosylation in prokaryotes.  相似文献   

13.
As one of the most important post‐translational modifications, the discovery, isolation, and identification of glycoproteins are becoming increasingly important. In this study, a Con A‐magnetic particle conjugate‐based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and hepatocellular carcinoma (HCC) case sera. The isolated glycoproteins and their N‐linked glycans were identified by LC‐ESI‐MS/MS and MALDI‐TOF/TOF‐MS, respectively. A total of 93 glycoproteins from the healthy donors and 85 glycoproteins from the HCC cases were identified. There were 34 different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34). Twenty‐eight glycans from the healthy donors and 30 glycans from the HCC cases were detected and there were 22 different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Among these glycoproteins, 50 were known to be N‐linked glycoproteins and three novel glycopeptides from two predicted potential glycoproteins were discovered. Moreover, lectin blotting, Western blotting and lectin/glyco‐antibody microarrays were applied to definitely elucidate the change of selective protein expressions and their glycosylation levels, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.  相似文献   

14.
Comprehensive analyses of proteins from cells and tissues are the most effective means of elucidating the expression patterns of individual disease-related proteins. On the other hand, the simultaneous separation and characterization of proteins by 1-DE or 2-DE followed by MS analysis are one of the fundamental approaches to proteomic analysis. However, these analyses do not permit the complete structural identification of glycans in glycoproteins or their structural characterization. Over half of all known proteins are glycosylated and glycan analyses of glycoproteins are requisite for fundamental proteomics studies. The analysis of glycan structural alterations in glycoproteins is becoming increasingly important in terms of biomarkers, quality control of glycoprotein drugs, and the development of new drugs. However, usual approach such as proteoglycomics, glycoproteomics and glycomics which characterizes and/or identifies sugar chains, provides some structural information, but it does not provide any information of functionality of sugar chains. Therefore, in order to elucidate the function of glycans, functional glycomics which identifies the target glycoproteins and characterizes functional roles of sugar chains represents a promising approach. In this review, we show examples of functional glycomics technique using alpha 1,6 fucosyltransferase gene (Fut8) in order to identify the target glycoprotein(s). This approach is based on glycan profiling by CE/MS and LC/MS followed by proteomic approaches, including 2-DE/1-DE and lectin blot techniques and identification of functional changes of sugar chains.  相似文献   

15.
ABSTRACT We have measured binding of fluorescein-conjugated succinyl-concanavalin A (Fl-s-Con A) to bloodstream and procyclic forms of Trypanosoma brucei gambiense and to bloodstream forms of T. b. rhodesiense by flow cytofluorimetry. Bloodstream forms bound an order of magnitude less lectin than procyclic forms. Trypsin-treating cells enhanced binding of Fl-s-Con A to bloodstream forms 3–16-fold depending on the strain and the length of trypsinization but had little effect on Fl-s-Con A binding by procyclics. The trypsinization protocol used did not remove major common glycoproteins detected on lectin blots of either life cycle form but removed >95% of the variant specific glycoprotein and fragments derived from this protein of bloodstream forms. Microscopically detectable Fl-s-Con A binding to bloodstream forms was confined to the flagellar pocket. Trypsinized bloodstream forms and procyclics bound Fl-s-Con A in the flagellar pocket, on the flagellum, and on the cell surface. Lectin remained cell associated but appeared to redistribute towards the flagellum and pocket when cells that had bound lectin on ice were subsequently incubated at physiological temperatures. The Fl-s-Con A binding had specificity characteristic of the interaction between the lectin and oligosaccharides. These results are consistent with the hypothesis that the variant specific surface glycoprotein blocks binding of the lectin to surface glycoproteins of bloodstream forms and suggest that concanavalin A-binding glycoproteins are abundant in the flagellar pocket of both life cycle forms.  相似文献   

16.
A carbohydrate binding protein was found in mid-lactating rat mammary gland. This rat mammary gland lectin agglutinated trypsinized rabbit erythrocytes and the hemagglutination was inhibited by the addition of β-d-galactosides such as lactose, melibiose, UDP-galactose and thio-d-galactoside. The lectin was partially purified by affinity chromatography on a column of Sepharose 4B to which asialo-fetuin had been covalently linked. Rat mammary gland lectin is a glycoprotein with a molecular weight of 14,800, estimated from SDS-PAGE, or 16,800 from gel filtration.

The occurrence of two glycoproteins, C4-casein and α-lactalbumin, is known in rat milk. Bovine κ-casein is a well-characterized glycoprotein. These glycoproteins were found to be bound by the rat mammary gland lectin, when they were desialylated by the action of neuraminidase. Neuraminidase-untreated α-lactalbumin also bound to the lectin but to a lesser extent. The level of the lectin in rat mammary gland was greatly reduced during regression of the gland after weaning.  相似文献   

17.
Summary A cytochemical and biochemical study of galactose (Gal) and N-acetyl-glucosamine (GlcNAc) containing glycoproteins of the anuran amphibian epidermis during development has been carried out. In premetamorphic tadpoles, theGriffonia simplicifolia II lectin (GS II, specific for N-acetyl glucosamine) bound to a glycoprotein of 49 kDa in the plasma membrane of all the epidermal strata showing a basal-to-apical binding gradient. During metamorphic climax GS II labeling was progressively polarized to the outermost plasma membrane. In epidermis from juveniles and adults the staining was observed mainly in a 52 kDa band.Griffonia simplicifolia I lectin (GS I, specific for galactose) also bound to a glycoprotein of about 49 kDa in tadpoles and 52 kDa in frogs. Furthermore, a GS I labeling in bands of about 110–150 kDa appears during metamorphosis. After this process, a definitive pattern of lectin staining and K+-stimulated, ouabain-sensitive p-nitrophenyl phosphatase activity is established.  相似文献   

18.
Biotinylation is widely used in DNA, RNA and protein probing assays as this molecule has generally no impact on the biological activity of its substrate. During the streptavidin‐based detection of glycoproteins in Lactobacillus rhamnosus GG with biotinylated lectin probes, a strong positive band of approximately 125 kDa was observed, present in different cellular fractions. This potential glycoprotein reacted heavily with concanavalin A (ConA), a lectin that specifically binds glucose and mannose residues. Surprisingly, this protein of 125 kDa could not be purified using a ConA affinity column. Edman degradation of the protein, isolated via cation and anion exchange chromatography, lead to the identification of the band as pyruvate carboxylase, an enzyme of 125 kDa that binds biotin as a cofactor. Detection using only the streptavidin conjugate resulted in more false positive signals of proteins, also in extracellular fractions, indicating biotin‐associated proteins. Indeed, biotin is a known cofactor of numerous carboxylases. The potential occurence of false positive bands with biotinylated protein probes should thus be considered when using streptavidin‐based detection, e.g. by developing a blot using only the streptavidin conjugate. To circumvent these false positives, alternative approaches like detection based on digoxigenin labelling can also be used.  相似文献   

19.
A new fluorescent prestaining method for gel‐separated glycoproteins in 1D and 2D SDS‐PAGE was developed by using dansylhydrazine in this study. The prestained gels could be easily imaged after electrophoresis without any time‐consuming steps needed for poststains. As low as 4–8 ng glycoproteins (transferrin, α1‐acid glycoprotein) could be selectively detected, which is comparable to that of Pro‐Q Emerald 488, one of the most commonly used glycoprotein stain. In addition, a subsequent study of deglycosylation, glycoprotein affinity isolation, and LC‐MS/MS analysis was performed to confirm the specificity of the newly developed method.  相似文献   

20.
Summary The populations of cell surface proteins and total glycoproteins were investigated in early Xenopus embryos through lectin staining, affinity binding of glycoproteins to lectins, and use of a succinimide ester to biotinylate cell surface molecules. Lectin staining shows that the egg is endowed with a thick layer of surface glycoprotein, and that glycoprotein is immediately detected on the newly formed membranes of nascent blastomeres. The amount of glycoprotein found in eggs and early embryos remains constant, and electrophoretic analysis reveals no changes in abundant lectin-binding glycoproteins through the neurula stage. In contrast, the amount of cell surface protein increases dramatically from the 2-cell to the gastrula stages. Despite this quantiative increase, only a small number of differences in cell surface proteins were detected during this period. A series of bands was detected which appears to be specific to the outer surface of the embryo. Because the populations of surface proteins and of total glycoproteins overlap to a great extent, the increase in cell surface protein, in the absence of a change in total glycoprotein, indicates the presence of a maternal glycoprotein pool in the Xenopus egg, from which the cell surface proteins of embryonic blastomeres are recruited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号