首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Baroreflex control of heart rate was studied in inbred salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) Dahl rats that were subjected to chronic dietary sodium chloride loading (for 4 weeks) either in youth or only in adulthood, i.e. from the age of 4 or 12 weeks. Using phenylephrine administration to pentobarbital-anesthetized male rats we have demonstrated the decreased baroreflex sensitivity (lower slope for reflex bradycardia) in young prehypertensive SS/Jr rats fed a low-salt diet as compared to age-matched SR/Jr animals. High salt intake further suppressed baroreflex sensitivity in young SS/Jr but not in SR/Jr rats. Baroreflex sensitivity decreased with age in SR/Jr rats, whereas it increased in SS/Jr rats fed a low-salt diet. Thus at the age of 16 weeks baroreflex sensitivity was much higher in SS/Jr than in SR/Jr animals. High salt intake lowered baroreflex sensitivity even in adult SS/Jr rats without affecting it in adult SR/Jr rats. Nevertheless, baroreflex sensitivity was significantly lower in young SS/Jr rats with a severe salt hypertension than in adult ones with a moderate blood pressure elevation. It is concluded that the alterations of baroreflex sensitivity in young inbred SS/Jr rats (including the response to high salt intake) are similar to those described earlier for outbred salt-sensitive Dahl rats. We have, however, disclosed contrasting age-dependent changes of baroreflex sensitivity in both inbred substrains of Dahl rats.  相似文献   

2.
The pronounced activation of sympathetic nervous system is a necessary prerequisite for the development of neurogenic pulmonary edema (NPE) in rats with balloon compression of spinal cord. In this study we examined whether this is a consequence of rapid activation of spinal pathways leading to sympathetic venoconstriction, blood pressure rise, and reflex bradycardia. We found that NPE development can be prevented by epidural upper thoracic anesthesia or by transection of the upper spinal cord. This indicates an important role of spinal pathways activation. NPE development can also be prevented by moderate blood loss, supporting the role of blood redistribution to pulmonary circulation. In rats developing NPE the catecholamine surge following spinal cord compression involved not only a dramatic increase of circulating norepinephrine but also of epinephrine levels. The pretreatment of rats with α-1 adrenoceptor blocker prazosin, α-2 adrenoceptor blocker yohimbine, or calcium channel blocker nifedipine prevented NPE development, whereas the effect of β-adrenoceptor blockade with propranolol was less convincing. In conclusion, considerable activation of thoracic spinal pathways, followed by marked catecholamine secretion, play a major role in the development of NPE in spinal cord-injured rats. Enhanced α-adrenergic nifedipine-sensitive vasoconstriction is responsible for observed blood pressure changes, subsequent baroreflex bradycardia, and blood volume redistribution, which represent major pathogenetic mechanisms of NPE development.  相似文献   

3.
This study investigated the release of prostacyclin (PGI2) and thromboxane A2 (TXA2) from the aortic walls of various experimental hypertensive rats, e.g. spontaneously hypertensive rats (SHR), Dahl salt-sensitive (Dahl S) rats, deoxycorticosterone (DOCA)-salt hypertensive rats and renovascular (2-kidney, 1-clip (2K1C) and 1-kidney, 1-clip (1K1C] hypertensive rats. The PGI2 generation was increased significantly in these hypertensive models, irrespective of the hypertensive mechanisms, when they developed established hypertension. Dahl S rats, having an impaired PGI2 production on a low salt diet, restored PGI2 generating capacity to the control level of Dahl salt-resistant rats when they were fed a high salt diet and developed salt-induced hypertension. On the other hand, the TXA2 generation in the vascular walls was enhanced particularly in rat models for genetic hypertension, and this system was unaltered in the models for secondary hypertension, e.g. DOCA-salt and renovascular hypertension. Thus, it is suggested that the elevation of blood pressure is associated with an increase in vascular PGI2 production, and that the increased vascular TXA2 production is a characteristic feature of genetic hypertension.  相似文献   

4.
In the present study, we evaluated the involvement of the rennin-angiotensin system (RAS) in the control of the blood pressure (BP), baroreceptor-mediated bradycardia and the reactivity of caudal ventrolateral medulla (CVLM) neurons to Ang II and to AT(2) receptor antagonist in sedentary or trained renovascular hypertensive rats. Physical activity did not significantly change the baseline mean arterial pressure (MAP), heart rate (HR) or the sensitivity of the baroreflex bradycardia in normotensive Sham rats. However, in 2K1C hypertensive rats, physical activity induced a significant fall in baseline MAP and HR and produced an improvement of the baroreflex function (bradycardic component). The microinjections of Ang II into the CVLM produced similar decreases in MAP in all groups, Sham and 2K1C, sedentary and trained rats. The hypotensive effect of Ang II at the CVLM was blocked by previous microinjection of the AT(2) receptors antagonist, PD123319, in all groups of rats. Unexpectedly, microinjection of PD123319 at the CVLM produced a depressor effect in 2K1C sedentary that was attenuated in 2K1C trained rats. No significant changes in MAP were observed after PD123319 in Sham rats, sedentary or trained. These data showed that low-intensity physical activity is effective in lowering blood pressure and restoring the sensitivity of the baroreflex bradycardia, however these cardiovascular effects are not accompanied by changes in the responsiveness to Ang II at CVLM in normotensive or hypertensive, 2K1C rats. In addition, the blood pressure changes observed after AT(2) blockade in 2K1C rats suggest that hypertension may trigger an imbalance of AT(1)/AT(2) receptors at the CVLM that may be restored, at least in part, by low-intensity physical activity.  相似文献   

5.
Development of salt-induced hypertension in Dahl salt-sensitive (S) rats is dependent on sympathetic overactivity which may be partially related to arterial baroreflex dysfunction and, therefore, is regionally selective. Our first experiment was designed to determine which regions have elevated sympathetic activity in Dahl S compared with Dahl salt-resistant (R) rats. Weanling (4-week-old) female Dahl R and S rats were fed low or high salt diets (0.13% and 8% NaCl) until 10 weeks of age. Norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the fractional decline of NE concentration was measured in various tissues. Dahl S rats with increases in both arterial pressure and left ventricular weight demonstrated increased NE turnover in the sinoatrial node, the atrial appendages, the cardiac ventricles, and the renal cortex. In all of these tissues except the cardiac ventricle, increases were associated with high salt intake. Our second experiment was designed to test if arterial baroreflex dysfunction could account for regional increases in sympathetic activity. Separate groups of Dahl R and S rats fed high salt were subjected to either sham surgery or sinoaortic baroreceptor denervation 1 week prior to turnover determinations. Sinoaortic baroreceptor denervation abolished differences in NE turnover between salt-fed Dahl R and S rats in the cardiac sinoatrial node and the atrial appendages, but not in the cardiac ventricles and the renal cortex. Sinoaortic baroreceptor denervation also abolished differences between salt-fed Dahl S and R rats in the spleen but not the duodenum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Hypertension is associated to an increase in central oxidative stress and an attenuation of the baroreflex control of arterial pressure. The present study evaluated the effect of alterations in the levels of nitric oxide (NO) and superoxide anion in the caudal ventrolateral medulla (CVLM), a key area of the brainstem for the baroreflex control of arterial pressure, in renovascular hypertensive rats (2K1C). Baseline mean arterial pressure (MAP), heart rate (HR), and reflex bradycardia were evaluated 30 days after renal artery occlusion in anesthetized (urethane, 1.2 g/kg, i.p.) 2K1C or normotensive (SHAM) rats. The MAP, HR, and baroreflex control of HR were evaluated before and after CVLM microinjections of the non-selective NOS inhibitor L-NAME (10 nmol), the NO precursor L-ARG (50 nmol), or the antioxidant ascorbic acid, Vit C (10 nmol). In both 2K1C and SHAM animals, CVLM microinjection of L-NAME produced a decrease in MAP, whereas L-ARG induced a significant increase in MAP. However, microinjection of Vit C into the CVLM produced a decrease in MAP and HR only in 2K1C and not in SHAM rats. Cardiovascular effects produced by microinjection of l-ARG into the CVLM were abolished by prior microinjection of L-NAME in the CVLM of 2K1C and SHAM rats. Microinjection of L-NAME into the CVLM increased the sensitivity of reflex bradycardia in 2K1C animals. In contrast, the CVLM microinjection of L-ARG reduced reflex bradycardia only in SHAM rats. Vit C in the CVLM did not change reflex bradycardia in either 2K1C or in SHAM rats. These results suggest that increased oxidative stress in the CVLM during hypertension contributes to the reduced baroreflex sensitivity and to maintain hypertension in the 2K1C model.  相似文献   

7.
The objective of the present study was to evaluate the baroreflex and the autonomic control of heart rate (HR) in renovascular hypertensive mice. Experiments were carried out in conscious C57BL/6 (n = 16) mice 28 days after a 2-kidney 1-clip procedure (2K1C mice) or a sham operation (sham mice). Baroreflex sensitivity was evaluated by measuring changes in heart rate (HR) in response to increases or decreases in mean arterial pressure (MAP) induced by phenylephrine or sodium nitroprusside. Cardiac autonomic tone was determined by use of atropine and atenolol. Basal HR and MAP were significantly higher in 2K1C mice than in sham mice. The reflex tachycardia induced by decreases in MAP was greatly attenuated in 2K1C mice compared with sham mice. Consequently, the baroreflex sensitivity was greatly decreased (2.2 +/- 0.4 vs. 4.4 +/- 0.3 beats x min(-1) x mmHg(-1)) in hypertensive mice compared with sham mice. The reflex bradycardia induced by increases in MAP and the baroreflex sensitivity were similar in both groups. Evaluation of autonomic control of HR showed an increased sympathetic tone and a tendency to a decreased vagal tone in 2K1C mice compared with that in sham mice. 2K1C hypertension in mice is accompanied by resting tachycardia, increased predominance of the cardiac sympathetic tone over the cardiac vagal tone, and impairment of baroreflex sensitivity.  相似文献   

8.
A reduction in the density of small arterioles (rarefaction) has been reported in several vascular beds of the spontaneously hypertensive rat (SHR). There have been conflicting reports on the existence of rarefaction in the pial vasculature of SHR. In this study, we determined whether there was rarefaction of pial arterioles in several models of hypertension. We studied SHR; two-kidney, one-clip Goldblatt hypertensive rats; deoxycorticosterone-salt hypertensive rats; and Dahl salt-sensitive rats fed high salt diet. The two groups of normotensive controls were Wistar--Kyoto rats and Dahl salt-sensitive rats fed low salt diet. The duration of hypertension was about 2 months. Density of first-, second-, third-, and fourth-order arterioles was determined by counting the number of vessels from enlarge photographs. We also measured the lengths of segments of the arterioles. We did not observe any evidence of rarefaction of arterioles in the pial vasculature in any of the hypertensive groups of rats. We conclude that (i) rarefaction of arterioles does not occur in the pial microvasculature after approximately 2 months of hypertension and (ii) rarefaction of pial arterioles does not account for abnormalities in the cerebral circulation of hypertensive rats such as protection of the blood-brain barrier or changes in autoregulation of cerebral blood flow.  相似文献   

9.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

10.
We have previously demonstrated two different catecholaminergic patterns in genetic and experimental hypertension: a hyperdopaminergic state in spontaneously hypertensive (Okamoto) rats (SHR) and a hypernoradrenergic state in salt-sensitive Dahl rats. Plasma immunoreactive atrial natriuretic factor (IR ANF) concentrations increase in both models as a response to hypertension. To distinguish between the genetic and acquired components of these abnormalities, we measured adrenal dopamine-beta-hydroxylase (D beta H) activity and coeliac ganglionic atrial natriuretic factor (ANF) like immunoreactivity in the two animal strains. While adrenal D beta H activity was increased in Dahl S rats, it was diminished in SHR in the prehypertensive as well as in the hypertensive stages. In the hypertensive stage, the ANF-like immunoreactivity in the coeliac ganglia was lower in the Dahl S group but higher in SHR than in their respective normotensive controls; there were no changes in these animals when they were prehypertensive. Differences in D beta H activity, which determines the fine tuning of sympathoadrenomedullary catecholamine synthesis may account for the inheritance of mechanisms resulting in salt-sensitive hypertension (as in SHR) or salt-dependent hypertension (as in Dahl salt-sensitive rats). In contrast, plasma IR ANF concentrations may reflect a defense mechanism against hypertension. However ANF-like immunoreactivity in coeliac ganglia does not follow its plasma concentrations and changes in different directions in the two hypertensive strains; it may reflect a neuromodulatory function of ANF in the ganglionic neurotransmission and different implications of this role of ANF in the two hypertensive models.  相似文献   

11.
Studies were designed to examine the hypothesis that the renal medulla of Dahl salt-sensitive (Dahl S) rats has a reduced capacity to generate nitric oxide (NO), which diminishes the ability to buffer against the chronic hypertensive effects of small elevations of circulating ANG II. NO synthase (NOS) activity in the outer medulla of Dahl S rats (arginine-citrulline conversion assay) was significantly reduced. This decrease in NOS activity was associated with the downregulation of protein expression of NOS I, NOS II, and NOS III isoforms in this region as determined by Western blot analysis. In anesthetized Dahl S rats, we observed that a low subpressor intravenous infusion of ANG II (5 ng. kg(-1). min(-1)) did not increase the concentration of NO in the renal medulla as measured by a microdialysis with oxyhemoglobin trapping technique. In contrast, ANG II produced a 38% increase in the concentration of NO (87 +/- 8 to 117 +/- 8 nmol/l) in the outer medulla of Brown-Norway (BN) rats. The same intravenous dose of ANG II reduced renal medullary blood flow as determined by laser-Doppler flowmetry in Dahl S, but not in BN rats. A 7-day intravenous ANG II infusion at a dose of 3 ng. kg(-1). min(-1) did not change mean arterial pressure (MAP) in the BN rats but increased MAP in Dahl S rats from 120 +/- 2 to 138 +/- 2 mmHg (P < 0.05). ANG II failed to increase MAP after NO substrate was provided by infusion of L-arginine (300 microg. kg(-1). min(-1)) into the renal medulla of Dahl S rats. Intravenous infusion of L-arginine at the same dose had no effect on the ANG II-induced hypertension. These results indicate that an impaired NO counterregulatory system in the outer medulla of Dahl S rats makes them more susceptible to the hypertensive actions of small elevations of ANG II.  相似文献   

12.
The relationship between circulating atrial natriuretic polypeptide (ANP) and blood pressure was studied in inbred Dahl salt-sensitive (S) and inbred Dahl salt-resistant (R) rats. Two month old S and R rats raised on normal rat chow had only small differences in blood pressure and no difference in plasma ANP levels. In contrast, when 6-month-old rats also raised on normal chow were studied, S had markedly elevated blood pressure and a 4 fold increase in plasma ANP compared to R. Similar strain differences in blood pressure and plasma ANP could be induced in young rats by feeding them diets high in salt. In six week old S and R rats which had been fed high salt diet for 3 weeks the S rats showed higher blood pressure and plasma ANP than R rats. The high plasma ANP levels seen in the hypertensive S rats were interpreted to be a response to hypertension and not a cause of hypertension. There was no qualitative strain difference in the plasma ANP molecule as assessed by reverse phase high pressure liquid chromatography.  相似文献   

13.
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.  相似文献   

14.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

15.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide. Carbon monoxide inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. We reported HO-1-mediated endothelial dysfunction in Dahl salt-sensitive hypertension. Previous studies suggested that salt-sensitive hypertensive rats, but not spontaneously hypertensive rats (SHR), display endothelial dysfunction. This study examines the hypothesis that HO-1-mediated arteriolar endothelial dysfunction develops in deoxycorticosterone acetate (DOCA)-salt hypertensive (DOCA) rats, but not in SHR. Uninephrectomized (isoflurane anesthesia) male Sprague-Dawley rats received DOCA injections and saline drinking solution for 4 wk. Rats subjected to sham surgery received vehicle injections and tap water. Blood pressure was elevated in DOCA rats and SHR compared with sham and Wistar-Kyoto (WKY) groups. Aortic HO-1 expression and blood carboxyhemoglobin levels were elevated in the DOCA group, but not in SHR. In isolated gracilis muscle arterioles, ACh caused concentration-related vasodilation in all groups, with attenuated maximum responses in DOCA, but not in SHR, arterioles. Acute pretreatment with an inhibitor of HO, chromium mesoporphyrin, restored ACh-induced responses in DOCA arterioles to sham levels. ACh responses remained the same in SHR and WKY arterioles after chromium mesoporphyrin treatment. These data show that HO-1 levels and activity are increased and arteriolar responses to ACh are decreased in DOCA rats, but not in SHR. Furthermore, in DOCA arterioles, an inhibitor of HO restores ACh-induced vasodilation to sham levels. These results suggest that elevated HO-1 levels and activity, not resulting from hypertension per se, contribute to endothelial dysfunction in DOCA rats.  相似文献   

16.
Hypertension is the main risk factor for left ventricular hypertrophy and development of diastolic heart failure. There is no yet treatment, which can effectively reduce mortality in patients suffering from heart failure with preserved systolic function. We tested whether the calcium sensitizer levosimendan and the AT1-receptor antagonist valsartan could protect from salt-induced hypertension, cardiovascular mortality and heart failure in Dahl/Rapp salt-sensitive rats fed for 7 weeks with a high salt diet (8% NaCl). Levosimendan (1 mg/kg/day via drinking water) and valsartan (30 mg/kg in the food) monotherapies and their combination prevented mortality in Dahl/Rapp rats. The drug combination evoked an additive effect on blood pressure, cardiac hypertrophy, cardiomyocyte cross-sectional area, target organ damage and myocardial ANP mRNA expression. There was a close correlation between systolic blood pressure and cardiac hypertrophy, cardiac and renal damage. As compared to Dahl/Rapp controls kept on low-salt diet (NaCl 0.3%). The high salt rats exhibited impaired diastolic relaxation as assessed by isovolumic relaxation time. Levosimendan alone and in combination with valsartan, improved diastolic relaxation without significantly improving systolic function. Our findings are evidence for an additive effect between levosimendan and valsartan on blood pressure and a blood pressure-dependent protection against the development of salt-induced target organ damage. The present study also demonstrates that levosimendan, alone or in combination with valsartan, can correct diastolic dysfunction induced by salt-dependent hypertension.  相似文献   

17.
Flavonoid, a plant extract, exhibits various biological actions. Dietary flavonoid intake is reported to reduce an elevated blood pressure, however the mechanism is unknown. The epithelial Na+ channel (ENaC) in the kidney plays a key role in the regulation of blood pressure by contributing to the Na+ reabsorption in renal tubules. Thus, we investigated the effect of quercetin, a flavonoid, on ENaC mRNA expression in the kidney of hypertensive Dahl salt-sensitive rats. Dahl salt-sensitive rats of 8 weeks were acclimated for 1 week in a metabolic cage and were subsequently kept for 4 weeks under four different conditions: (1) normal salt diet (0.3% NaCl), (2) normal salt diet with quercetin (10 mg/kg/day), (3) high-salt diet (8% NaCl), and (4) high-salt diet with quercetin. Quercetin diminished the alphaENaC mRNA expression in the kidney associated with reduction of the systolic blood pressure elevated by high-salt diet, suggesting that one of the mechanisms of the flavonoid's antihypertensive effect on salt-sensitive hypertension would be mediated through downregulation of ENaC expression in the kidney.  相似文献   

18.
A carotid infusion of angiotensin (AII) (10 ng/kg/min) has been found to increase significantly higher mean arterial pressure (MAP) and produces significantly lower bradycardia than AII intravenous infusions at the same dose and rate. Besides, i.v. administration of AII elicits greater impairment on baroreflex sensitivity than carotid infusion of AII does. On the other hand, vasopressin vascular receptor blockade did not modify the baroreflex sensitivity either in the carotid or in the i.v. infusions of AII, and plasma AVP measurements did not change significantly in any group. It clearly indicates that neither AVP nor baroreflex impairment plays any role on the pressor action of AII intracarotid infusions at a low dose. The present results further suggest that baroreflex impairment in rats may unlikely be located in the region irrigated by the carotid artery.  相似文献   

19.
The effect of atrial natriuretic factor (ANF) on baroreflex sensitivity was determined in unanesthetized normotensive (Wistar-Kyoto, WKY) or spontaneously hypertensive rats (SHR) during acute hypertensive stimuli (phenylephrine) or hypotensive stimuli (sodium nitroprusside). The i.v. dose of rat ANF [( Ser99,Tyr126]ANF) was 50 ng/min per rat, sufficient to decrease mean arterial blood pressure (ABP) by about 6 mmHg (1 mmHg = 133.3 Pa) in WKY. SHR showed no change in ABP with this ANF dose. During a control infusion of physiological saline, the mean heart rate (HR) response to increases in ABP was -1.30 +/- 0.27 beats/min (bpm)/mmHg in WKY and -0.37 +/- 0.22 in SHR (p less than 0.05). These values were not affected significantly by ANF. However, ANF blunted chronotropic responses to ABP decreases. The control values of the delta HR/delta ABP slope in WKY and SHR were -2.34 +/- 0.57 and -2.01 +/- 0.37 bpm/mmHg, respectively. In the presence of ANF, the slope changed to -0.36 +/- 0.43 (i.e., bradycardia in response to hypotension) in WKY and to +0.20 +/- 0.21 in SHR (p less than 0.005 for the difference from control for both). This ANF-induced loss of baroreflex sensitivity was reversed in WKY by the addition of angiotensin I (sufficient to increase ABP by 5 mmHg in control rats). Angiotensin did not restore baroreflex sensitivity in ANF-infused SHR, and ANF had no effect on the ABP increase caused by angiotensin in either group. The data suggest that ANF does not act on baroreceptor structures directly, but inhibits mechanisms involved in efferent sympathetic activation. Parasympathetic responses do not appear to be compromised.  相似文献   

20.
Calpains are a family of 14 intracellular calcium-dependent proteases, which have been implicated in cardiovascular diseases. We aimed to analyze specifically the expressional regulation of the different calpain isoforms in hypertensive target organ damage. Using real-time PCR, we found calpain 6 and 9 down-regulated by more than 50% and the endogenous calpain inhibitor calpastatin up-regulated by 225%, respectively, in the hearts of Dahl salt-sensitive rats on a high salt (4% NaCl) compared to normal salt diet. On the protein level, calpain 9 but not calpastatin was regulated in the hypertensive target organs heart and kidney. Moreover, the myocardial expression of calpain 9 protein was inversely linked to left ventricular mass (r= -0.93, p<0.01), and renal expression of calpain 9 protein correlated inversely with albuminuria (r= -0.82, p<0.05). In the aorta, there was no regulation of calpain 9 on the protein level. We conclude that differential regulation of calpain 9 may play a role in hypertensive target organ damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号