首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A novel isocratic reversed-phase high performance liquid-chromatography/ultraviolet detection method for simultaneous determination of cefdinir and cefixime in human plasma was developed and validated after optimization of various chromatographic conditions and other experimental parameters. Sample preparation based on a simple extraction procedure consisting of deproteination and extraction with 3 parts of 6% trichloroacetic acid aqueous solution followed by volume make up with the aqueous component of the mobile phase obtained best recoveries of the two analytes. Samples were separated on a Supelco Discovery HS C(18) (150 mm × 4.6 mm, 5 μm) analytical column protected by a Perkin Elmer C(18) (30 mm × 4.6 mm, 10 μm) guard cartridge. The mobile phase, methanol/acetonitrile (50/50, v/v):0.05% trifluoroacetic acid (19:81, v/v), operated at 50°C column oven temperature was pumped at a flow rate of 2.0 mL min(-1) and the column eluents were monitored at a wavelength of 285 nm. When Sample was injected into the Perkin Elmer high performance liquid-chromatography system through Rheodyne manual (or auto-sampler) injector equipped with 20 μL loop, separation was achieved within 4 min. The present method demonstrated acceptable values for selectivity, linearity within the expected concentration range (0.004-5.0 μg mL(-1); r(2)>0.999 for both analytes), recovery (>95% for cefdinir and >96% for cefixime), precision (%RSD<2.0 for cefdinir and <2.2 for cefixime), sensitivity (limit of detection: 1 ng mL(-1) and lower limit of quantification: 4 ng mL(-1) for both analytes), stability of solutions, and robustness. The method was efficiently applied to a pharmacokinetic study in healthy volunteers.  相似文献   

2.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with electrospray ionization (ESI) was developed and validated for the simultaneous determination of pitavastatin and its lactone in human plasma and urine. Following a liquid-liquid extraction, both the analytes and internal standard racemic i-prolact were separated on a BDS Hypersil C(8) column, using methanol-0.2% acetic acid in water (70: 30, v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 422.4-->m/z 290.3 for pitavastatin, m/z 404.3-->m/z 290.3 for pitavastatin lactone and m/z 406.3-->m/z 318.3 for the internal standard, respectively. Linear calibration curves of pitavastatin and its lactone were obtained in the concentration range of 1-200 ng/ml, with a lower limit of quantitation of 1 ng/ml. The intra- and inter-day precision values were less than 4.2%, and accuracies were between -8.1 and 3.5% for both analytes. The proposed method was utilized to support clinical pharmacokinetic studies of pitavastatin in healthy subjects following oral administration.  相似文献   

3.
A simple and specific HPLC assay for simultaneous determination of two major active components (-) epigallocatechin-3-gallate (EGCG), and (-) epicatechin-3-gallate (ECG) of tea polyphenols (TP) in rat plasma was developed and validated. Following addition of resorcinol as internal standard (IS) the analytes were isolated from rat plasma by liquid-liquid extraction with ethyl acetate. The chromatographic separation was achieved on a reversed-phase C18 column using an isocratic mobile phase consisting of 0.1% citric acid+CH(3)CN (86:14, v/v) running at flow rate of 1.5 mL/min. The effluent was monitored at a wavelength of 280 nm. EGCG, ECG and IS were well separated from each other and free from interference from blank plasma and other components in TP as well as metabolites post-dosing. The calibration curve was constructed by plotting peak area ratio of analytes to IS vs. concentration. The method showed good linearity over range of 0.5-300 microg/mL for EGCG and 0.1-60 microg/mL for ECG (r>0.999). The intra- and inter-day precision (R.S.D.) was better than 6 and 12%, respectively. Assay accuracy was better than 94.78% for both compounds. Extraction recovery at QC samples was between 85.73 and 91.93% for EGCG and 79.08 and 86.51% for ECG. The developed method was successfully used to simultaneously measure plasma concentrations of EGCG and ECG after intravenous administration of TP to rats and yielded two typical biexponential decay concentration-time curves.  相似文献   

4.
Irinotecan (CPT-11), a camptothecin analog, is metabolized to SN-38, an active topoisomerase I inhibitor, and inactive metabolites, including APC and SN-38 glucuronide (SN-38G). A high-performance liquid chromatographic assay method to simultaneously measure the lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in human plasma was developed. Chromatography was accomplished with a reversed-phase C(8) column and fluorescence detection. A gradient mobile phase system was used. The buffer for mobile phase A consisted of 0.75 M ammonium acetate, 5 mM tetrabutylammonium phosphate (pH 6.0), and acetonitrile (86:14, v/v). The buffer for mobile phase B was identical to mobile phase A with the exception of the concentration (50:50, v/v). Precipitation of plasma proteins was performed with cold methanol. The linear range of detection of the lactone and carboxylate forms of SN-38, SN-38G, and APC was 2-25 ng/ml, and 5-300 ng/ml for CPT-11. The limit of quantitation for the analytes ranged from 0.5 to 5 ng/ml. Analysis of patients' plasma samples obtained before and after CPT-11 administration showed that the assay is suitable for measuring lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in clinical studies.  相似文献   

5.
A novel highly sensitive ion-pairing reversed-phase high performance liquid-chromatography/electrochemical detection method for simultaneous determination of l-ascorbic acid, aminothiols, and methionine in biological matrices was developed, optimized, and validated. Reduced forms of the analytes were extracted from the sample matrices with 10% meta-phosphoric acid solution((aqueous)). To determine the total vitamin C, the total aminothiols, and the total methionine, samples were treated with tris(2-carboxyethyl)phosphine solution in 0.05% trifluoroacetic acid solution((aqueous)) subsequent to deproteination to reduce the oxidized forms of these compounds. Various analytes were separated on a C(18) (250 × 4.6 mm, 5 μm) analytical column using methanol-0.05% trifluoroacetic acid solution((aqueous)) (05/95, v/v), containing 0.1mM 1-octane sulphonic acid as the ion-pairing agent) as the isocratic mobile phase pumped at a flow rate of 1.5 mL min(-1) at room temperature. The column eluents were monitored at a voltage of 0.85 V. These analytes were efficiently resolved in less than 20 min using n-acetyl cysteine as the internal standard. The present method was specific for the analysis of these analytes and demonstrated acceptable values for linearity (r(2)>0.999 in the range of 0.2-10,000 ng mL(-1) for all the analytes), recovery (>96%), precision (%RSD ≤ 2.0), and sensitivity (on column limit of detection: 250-400 fg and limit of quantification: 0.8-1.25 pg), indicating that the proposed method could be efficiently used for determination of these analytes in the context of clinical research.  相似文献   

6.
A sensitive and selective LC-MS-MS method for the determination of DPC 423 (I), an antithrombotic agent, is described. This method used a solid-phase extraction from 0.1 ml plasma with an Isolute C(2) cartridge. HPLC separation was carried out on a YMC ODS-AQ C(18) column (50x2 mm) at a flow-rate of 300 microliter/min with an analysis time of 5 min. Compounds were eluted using a mobile phase of H(2)O/CH(3)CN/HCOOH: 66:34:0.1 (v/v/v), pH 4.0. A structural analogue of I was used as the internal standard to account for variations in recovery and instrument response. Mass spectrometric detection was carried out with a PE Sciex API III(+) triple quadrupole mass spectrometer equipped with a Turbo IonSpray source as the LC-MS interface. Good intra-day and inter-day assay precision (<10% CV) and accuracy (<10% difference) were observed over a concentration range of 0.005-2.5 microM in plasma. The extraction recoveries were approximately 90% and the method was found to be linear for the assay (r(2)>0.999). The method has been successfully applied to discovery and preclinical pharmacokinetic studies, including a dose range-finding study and toxicokinetic exposure studies in rat and dog.  相似文献   

7.
A method for the quantification of two peptide HIV-1 fusion inhibitors (enfuvirtide, T-20 and tifuvirtide, T-1249) and one metabolite of enfuvirtide (M-20) in human plasma has been developed and validated, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS). The analytes were extracted from plasma by solid-phase extraction (SPE) on vinyl-copolymer cartridges. Chromatographic separation of the peptides was performed on a Symmetry 300 C(18) column (50mmx2.1mm I.D., particle size 3.5 microm), using a water-acetonitrile gradient containing 0.25% (v/v) formic acid. The triple quadrupole mass spectrometer was operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for peak detection. Deuterated (d60) enfuvirtide and (d50) tifuvirtide were used as internal standards. The assay was linear over a concentration range of 20-10,000 ng/ml for enfuvirtide and tifuvirtide and of 20-2000 ng/ml for M-20. Intra- and inter-assay precisions and deviations from the nominal concentrations were 相似文献   

8.
A reversed-phase high-performance liquid chromatographic assay (HPLC) was utilized for monitoring xanomeline (LY246708/NNC 11–0232) and a metabolite, desmethylxanomeline, in human plasma. Xanomeline, desmethylxanomeline and internal standard were extracted from plasma with hexane at basic pH. The organic solvent extract was evaporated to dryness with nitrogen and the dried residue was reconstituted with 0.2 M HCl-methanol (50:50, v/v). A Zorbax CN 150 × 4.6 mm I.D., 5-μm column and mobile phase consisting of 0.5% (5 ml/l) triethylamine (TEA) adjusted to pH 3.0 with concentrated orthophosphoric acid-tetrahydrofuran (THF) (70:30, v/v) produced consistent resolution of analytes from endogenous co-extracted plasma components. Column effluent was monitored at 296 nm/0.008 a.u.f.s. and the assay limit of quantification was 1.5 ng/ml. A linear response of 1.5 to 20 ng/ml was sufficient to monitor plasma drug/metabolite concentrations during clinical trials. HPLC assay validation as well as routine assay quality control (QC) samples indicated assay precision/accuracy was better than ±15%.  相似文献   

9.
A method for the quantitation of DB-67 ((20S)-10-hydroxy-7-tert-butyldimethylsilylcamptothecin) lactone and carboxylate in mouse plasma has been developed, validated, and applied in pharmacokinetic studies. The analytes were separated by reversed-phase chromatography with fluorescence detection. Validation demonstrated the selectivity and specificity for the carboxylate and lactone, with linearity between 1-300ng/mL and 2.5-300ng/mL for the carboxylate and lactone, respectively (accuracy 90-110% of theory and coefficient of variation < or =5.7%). Carboxylate to lactone conversion was <4% using this method. The assay was found to be suitable for the analysis of DB-67 lactone and carboxylate in pharmacokinetic studies following intravenous administration of DB-67 or its delta-aminobutyric acid ester derivative.  相似文献   

10.
A sensitive and selective liquid chromatography-tandem mass spectrometry method (LC-MS-MS) for the simultaneous estimation of bulaquine and primaquine has been developed and validated in monkey plasma. The mobile phase consisted of acetonitrile/ammonium acetate buffer (20 mM, pH 6) (50:50 v/v) at a flow-rate of 1 ml/min. The chromatographic separations were achieved on two spheri cyano columns (5 microm, 30 x 4.6 mm I.D.) connected in series. The quantitation was carried out using a Micromass LC-MS-MS with an electrospray source in the multiple reaction monitoring (MRM) mode. The analytes were quantified from the summed total ion value of their two most intense molecular transitions. This is another novel method leading to increased sensitivity and precision. A simple liquid-liquid extraction with 2 x 1.0 ml n-hexane/ethyl acetate/dimethyloctyl amine (90:10:0.05, v/v) was utilized. The method was validated in terms of recovery, linearity, accuracy and precision (within- and between-assay variation). The recoveries from spiked control samples were >or=90 and 50% for bulaquine and primaquine, respectively. Linearity in plasma was observed over a dynamic range of 1.56-400 and 3.91-1000 ng/ml for bulaquine and primaquine, respectively.  相似文献   

11.
A rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma has been developed and validated. Following liquid-liquid extraction, the analytes were separated on a reversed-phase C(18) column (150 mm × 2.0 mm, 3 μm) using formic acid:10 mM ammonium acetate:methanol (0.2:62:38, v/v/v) as mobile phase at a flow rate of 0.2 mL/min and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode. The method was linear for all analytes over the following concentration (ng/mL) ranges: codeine 0.08-16; ephedrine 0.8-160; guaiphenesin 80-16,000; chlorpheniramine 0.2-40. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method was successfully applied to a bioequivalence study in 6 healthy beagle dogs.  相似文献   

12.
A new sensitive and specific method using liquid chromatography/tandem mass spectrometry for determination of bryostatin 1 was developed and validated. Sample pretreatment involved a double liquid-liquid extraction step with a mixture of acetonitrile/n-butyl chloride (1/4, v/v). Separation of the compound of interest, including the internal standard paclitaxel, was achieved on a Waters X-Terra C18 (50 x 2.1 mm i.d., 3.5 microm) analytical column with acetonitrile/water mobile phase (80:20, v/v) containing 0.1% formic acid using isocratic flow at 0.15 mL/min for 13 min. The analytes of interest were monitored by tandem mass spectrometry with electrospray positive ionization. The linear calibration curves were generated over the range of 50-2000 pg/mL with values for the coefficient of determination of >0.99. The values for both within-day and between-day precision and accuracy were <15%. This method was used to characterize the plasma pharmacokinetics of bryostatin 1 at doses of 20 microg/m2) to optimize treatment with this agent.  相似文献   

13.
Studies investigating the relationship between CYP2C19 genotype and the stereoselective metabolism of omeprazole have not been reported. In the present study, we developed a simple and sensitive analytical method based on column switching reversed phase high-performance liquid chromatography (HPLC) with UV detection to determine the concentrations of (R)- and (S)-omeprazole and of its principal metabolites, (R)- and (S)-5-hydroxyomeprazole, and the non-chiral, omeprazole sulfone, in human plasma. Sample preparation involved liquid-liquid extraction with diethyl ether:dichloromethane (60:40, v/v) followed by clean-up on a TSK BSA-ODS/S column (5 μm, 10 mm × 4.6mm i.d.) using phosphate buffer:acetonitrile (97:3, v/v, pH 6.4). After column switching, separation was performed on a Shiseido CD-ph chiral column (5 μm, 150 mm × 4.6mm i.d.) using phosphate buffer:methanol (45:55, v/v, pH 5.0) as mobile phase. The limit of quantitation (LOQ) was 5 ng/mL for all analytes with intra- and inter-day precisions (as coefficient of variation) of <9.5% and <9.6%, respectively for all analytes. The present method was successfully applied to a chiral pharmacokinetic study of omeprazole in human volunteers with different CYP2C19 genotypes. The results show that the formation of (R)-5-hydroxyomeprazole gives the best correlation with CYP2C19 genotype.  相似文献   

14.
A rapid and sensitive method using liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was developed and validated for simultaneous quantitative determination of valproic acid and three major metabolites (3-OH-valproic acid, 4-ene-valproic acid and 5-OH-valproic acid) in human plasma. The analytes and internal standard were isolated from 200 μL samples by solid phase extraction using a ZORBAX SB-C? column (3.5 μm, 2.1×100 mm) with an isocratic mobile phase consisting of methanol-10mM ammonium acetate (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.3 mL/min. The method had a chromatographic total run time of 2.0 min. The lower limit of quantification of valproic acid, 3-OH-valproic acid, 4-ene-valproic acid and 5-OH-valproic acid of the method was 2030, 51.5, 50.15 and 51.25 ng/mL, respectively. The method was linear for valproic acid and the three metabolites with correlation coefficients >0.995 for all analytes. The intra-day and inter-day accuracy and precision of the assay were less than 15.0%. This analytical method was successfully used to assay plasma concentrations of valproic acid and the three metabolites in human plasma from epileptic patients.  相似文献   

15.
An analytical method for the determination of artemether (A) and its metabolite dihydroartemisinin (DHA) in human plasma has been developed and validated. The method is based on high-performance liquid chromatography (HPLC) and electrochemical detection in the reductive mode. A, DHA and artemisinin, the internal standard (I.S.), were extracted from plasma (1 ml) with 1-chlorobutane—isooctane (55:45, v/v). The solvent was transferred, evaporated to dryness under nitrogen and the residue dissolved in 600 μl of water-ethyl alcohol (50:50, v/v). Chromatography was performed on a Nova-Pak CN, 4 μm analytical column (150 mm×3.9 mm I.D.) at 35°C. The mobile phase consisted of pH 5 acetate—acetonitrile (85:15, v/v) at a flow-rate of 1 ml/min. The analytes were detected by electrochemical detection in the reductive mode at a potential of −1.0 V Intra-day accuracy and precision were assessed from the relative recoveries (found concentration in % of the nominal value) of spiked samples analysed on the same day (concentration range 10.9 to 202 ng/ml of A and 11.2 to 206 ng/ml of DHA in plasma). The mean recoveries over the entire concentration range were from 96 to 100% for A with C .V. from 6 to 13%, from 92% to 100% for DHA (α-tautomer) with C .V. from 4 to 16%. For A, the mean recovery was 96% at the limit of quantitation (LOQ) of 10.9 ng/ml with a CV of 13%. For DHA, the mean recovery was 100% at the LOQ of 11.2 ng/ml with a CV of 16%.  相似文献   

16.
A rapid, sensitive and novel narrow-bore liquid chromatography-mass spectrometric method was developed and fully validated for the quantification of citalopram in human plasma. The analyte and internal standard (imipramine) were extracted by liquid-liquid extraction with a mixture of hexane-heptane-isopropanol (88:10:2, v/v/v). The use of a Hypersil BDS C(8) micro-bore column (250 mm x 2.1 mm i.d.; 3.5 microm particle size), results in substantial reduction in solvent consumption. The mobile phase consisted of 10 mM ammonium formate-formic acid (pH 4.5) and acetonitrile (30:70, v/v), pumped at a flow rate of 0.15 ml min(-1). The analytes were detected after positive electrospray ionization using the selected ion-monitoring mode of the species at m/z 325 for citalopram and m/z 281 for imipramine. The method had a chromatographic run time of 10.0 min and a linear calibration curve over the range 0.50-250 ng ml(-1) (r(2) > 0.996). The limit of quantitation was 0.50 ng ml(-1). Accuracy and precision were below the acceptance limits of 15%.  相似文献   

17.
Dronedarone, a noniodinated benzofuran derivative of amiodarone, is believed to have a better side effect profile, and is currently undergoing phase III clinical trials. A novel method was developed for the determination of dronedarone and its principal metabolite debutyldronedarone in both plasma and myocardial tissue by high-performance liquid chromatography (HPLC) coupled with UV-detection. The assay was also validated for determination of amiodarone and desethylamiodarone. Samples were obtained from healthy humans (plasma) and goats (plasma and myocardium). Sample preparation included deproteinization with acetonitrile and extraction with a mixture of heptane and dichloromethane (50/50, v/v). Chromatographic separation was performed on a Pathfinder PS polymeric C18 column (50 mm × 4.6 mm, 2.5 μm) with a mobile phase of acetonitrile, isopropanol, water and ammonia (80/10/10/0.025, v/v/v/v) at a flow-rate of 1 ml/min. Calibration curves of all analytes were linear in the range of 0.01–5 μg/ml for plasma samples, with a lower limit of quantification (LLOQ) of 0.04 μg/ml. For myocardial tissue samples, linear curves of all analytes were observed in the range of 0.02–500 μg/g, with a LLOQ of 0.08 μg/g. Within- and between-day precision was <18%, and within- and between-day accuracy ranged from 97.5 to 109.7%, with a recovery of 67.6–79.9%. The present method enables sensitive and specific detection of dronedarone, amiodarone and principal metabolites in plasma as well as myocardial tissue.  相似文献   

18.
A selective, simple and efficient method-ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for determination of two toxic alkaloids, namely strychnine and brucine in mice plasma. The UPLC separation was carried out using a 1.7 μm BEH C(18) column (50 mm × 2.1 mm) with a mobile phase consisting of methanol:0.1% formic acid (25:75, v/v), hence providing high efficiency, high resolution and excellent peak shape for the analytes and internal standard. The method was validated over the range of 2.48-496.4 ng/ml for strychnine and 2.64-528 ng/ml for brucine, respectively. Intra- and inter-day accuracy ranged from 95.0% to 107.9% for strychnine, 93.4% to 103.3% for brucine, and the precisions were within 13.8%. The extraction recoveries of both the two alkaloids exceed 81.9%. With a simple and minor sample preparation procedure and short run-time (<3 min), the proposed method was applicable for the pharmacokinetic and toxicological analysis of strychnine and brucine in vivo.  相似文献   

19.
A column switching high performance liquid chromatographic method with estimable sensitivity and accuracy was developed for the determination of cetirizine and ambroxol in human plasma using nebivolol as the internal standard. Plasma samples were prepared by liquid-liquid extraction in methylene chloride and a mixture of diethylether (80:20, v/v). The extracted samples were injected into a multifunctional clean-up column Supelcosil LCABZ (50 mm × 4.6 mm, 5 μm particle size) using mobile phase 1 comprising acetonitrile-phosphate buffer (pH 3.5; 20 mM) (20:80, v/v). The eluate of cetirizine and ambroxol were separated to an analytical Kromasil C(8) micro bore column (50 mm × 0.3 mm, 5 μm particle size) via a column switching device. A Kromasil C(18) analytical column (250 mm × 2.1 mm, 5 μm particle size) was used as a separation column. Mobile phase 2 consisting acetonitrile-triethylamine (0.5%) in phosphate buffer (pH 3.5; 20mM) (55:45, v/v) was used for the compound elution. The eluents were detected at 230 nm with photodiode array detector. An aliquot of 150 μl of plasma sample was introduced into the pretreatment column via the auto sampler using mobile phase 1 at a flow rate of 0.5 ml/min, column switching valve being positioned at A. The pretreatment column retained cetirizine, ambroxol and nebivolol (IS) in the column leaving the residual proteins of plasma eluted in void volume and drained out. The switching valve was shifted to position B at 7.5 min. Cetirizine, ambroxol and IS were eluted from the pretreatment column between 7. 5 and 11.5 min and introduced to the concentration column. Finally, cetirizine, ambroxol and IS were introduced to the separation column by switching valve using mobile phase 2 at a flow rate of 0.4 ml/min. During the analysis the pretreatment column was washed for the next analysis and resume to the position A. The total run time was 25 min for a sample. The procedure was repeated for urine analysis also. The method was linear from 2 to 450 ng/ml and 7-300 ng/ml for cetirizine and ambroxol respectively in plasma and 1-500 ng/ml and 5-400 ng/ml, respectively for cetirizine and ambroxol in urine. Intra-day and inter-day precision of cetirizine and ambroxol was below 15% in terms of coefficient of variation and accuracy of cetirizine and ambroxol was ranged from 94 to 101.6% and 91.1 to 100.2%, respectively. The method demonstrated high sensitivity and selectivity and therefore, applied to evaluate pharmacokinetics of cetirizine and ambroxol in healthy human volunteer after a single oral administration. Urine samples obtained from healthy human volunteers and clinical subjects with renal impairment have also been analyzed by the method to compare the elimination pattern. The method was precise and accurate for the estimation of cetirizine and ambroxol both in blood and in urine.  相似文献   

20.
Irinotecan (CPT-11) and its main metabolite SN-38 are potent anticancer derivatives of camptothecin (CPT), with active lactone and inactive carboxylate forms coexisting. A simple and sensitive HPLC method using the ion-pairing reagent tetrabutylammonium hydrogen sulfate (TBAHS) was developed to simultaneously determine all four analytes in rat plasma samples. Camptothecin (CPT) was used as internal standard. The mobile phase was 0.1M potassium dihydrogen phosphate containing 0.01 M TBAHS (pH 6.4)-acetonitrile (75:25, v/v). Separation of the compounds was carried out on a Hypersil C18 column, monitored at 540 nm (excitation wavelength at 380 nm). All four compounds gave linear response as a function of concentration over 0.01-10 microM. The limit of quantitation in rat plasma was 0.01, 0.008, 0.005 and 0.005 microM for CPT-11 lactone, CPT-11 carboxylate, SN-38 lactone and SN-38 carboxylate, respectively. The method was successfully used in the study on the effect of coadministered thalidomide on the plasma pharmacokinetics of CPT-11 and SN-38 in rats. Coadministered thalidomide (100mg/kg body weight by intraperitoneal injection) significantly increased the AUC(0-10h) values of CPT-11 lactone and CPT-11 carboxylate by 32.6% and 30.3 %, respectively, (P < 0.01), but decreased the values by 19.2% and 32.4% for SN-38 lactone and carboxylate, respectively, (P < 0.05). Accordingly, the value of total body clearance (CL) of CPT-11 lactone was significantly lower in combination group compared to the control (1.329 versus 1.837 L/h/kg, P = 0.0002). Plasma t(1/2beta) values for SN-38 lactone and carboxylate were significantly (P < 0.01) smaller in rats with coadministered thalidomide, as compared to rats receiving CPT-11 alone. Further studies are needed to explore the underlying mechanisms for the observed kinetic interaction between CPT-11 and thalidomide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号