首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many genetic traits have complex modes of inheritance; they may exhibit incomplete or age-dependent penetrance or fail to show any clear Mendelian inheritance pattern. As primary linkage maps for the human genome near completion, it is becoming increasingly possible to map these traits. Prior to undertaking a linkage study, it is important to consider whether the pedigrees available for the proposed study are likely to provide sufficient information to demonstrate linkage, assuming a linked marker is tested. In the current paper, we describe a computer simulation method to estimate the power of a proposed study to detect linkage for a complex genetic trait, given a hypothesized genetic model for the trait. Our method simulates trait locus genotypes consistent with observed trait phenotypes, in such a way that the probability to detect linkage can be estimated by sample statistics of the maximum lod score distribution. The method uses terms available when calculating the likelihood of the trait phenotypes for the pedigree and is applicable to any trait determined by one or a few genetic loci; individual-specific environmental effects can also be dealt with. Our method provides an objective answer to the question, Will these pedigrees provide sufficient information to map this complex genetic trait?  相似文献   

2.
With evidence of segregation at a major locus for a quantitative trait having been found, a logical next step is to select a subset of the pedigrees to include in a linkage study to map the major locus. Ideally this subset should include much of the linkage information in the sample but include only a fraction of the pedigrees. We previously described a strategy for selecting pedigrees for linkage analysis of a quantitative trait on the basis of a pedigree likelihood-ratio statistic. For quantitative traits controlled by a major locus with a rare dominant allele, the likelihood-ratio strategy extracted nearly all the information for linkage while typically requiring marker data on only about one-third of the pedigrees. Here, we describe a new strategy to select pedigrees for linkage analysis on the basis of the expected number of potentially informative meioses in each pedigree. We demonstrate that this informative-meioses strategy provides an efficient and more general means to select pedigrees for a linkage study of a quantitative trait.  相似文献   

3.
Computational constraints currently limit exact multipoint linkage analysis to pedigrees of moderate size. We introduce new algorithms that allow analysis of larger pedigrees by reducing the time and memory requirements of the computation. We use the observed pedigree genotypes to reduce the number of inheritance patterns that need to be considered. The algorithms are implemented in a new version (version 2.1) of the software package GENEHUNTER. Performance gains depend on marker heterozygosity and on the number of pedigree members available for genotyping, but typically are 10-1,000-fold, compared with the performance of the previous release (version 2.0). As a result, families with up to 30 bits of inheritance information have been analyzed, and further increases in family size are feasible. In addition to computation of linkage statistics and haplotype determination, GENEHUNTER can also perform single-locus and multilocus transmission/disequilibrium tests. We describe and implement a set of permutation tests that allow determination of empirical significance levels in the presence of linkage disequilibrium among marker loci.  相似文献   

4.
In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured in the multipoint inheritance distribution, which provides a framework for a unified approach to both parametric and nonparametric methods of linkage analysis. Specifically, the approach includes the following: (1) Rapid exact computation of multipoint LOD scores involving dozens of highly polymorphic markers, even in the presence of loops and missing data. (2) Non-parametric linkage (NPL) analysis, a powerful new approach to pedigree analysis. We show that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis. NPL thus appears to be the method of choice for pedigree studies of complex traits. (3) Information-content mapping, which measures the fraction of the total inheritance information extracted by the available marker data and points out the regions in which typing additional markers is most useful. (4) Maximum-likelihood reconstruction of many-marker haplotypes, even in pedigrees with missing data. We have implemented NPL analysis, LOD-score computation, information-content mapping, and haplotype reconstruction in a new computer package, GENEHUNTER. The package allows efficient multipoint analysis of pedigree data to be performed rapidly in a single user-friendly environment.  相似文献   

5.
Sample-size guidelines for linkage studies of quantitative traits partially determined by a dominant major locus are needed to provide a rough estimate of the amount of pedigree material that should be sampled to map the loci that influence such traits. After pedigrees are sampled, a specific power calculation can be carried out to evaluate the linkage information provided by the sampled pedigrees. Using computer simulation, I provide sample-size guidelines for linkage studies by the method of lod scores of quantitative traits partially determined by a dominant major locus. I consider the effects of a trait model, marker characteristics, and sampling strategy, with particular attention to sampling strategy because it is the one factor which the investigator can fully control. My results suggest that linkage studies of quantitative traits are practical, particularly if the investigator chooses an efficient sampling design and an efficient strategy to select pedigrees for linkage analysis.  相似文献   

6.
Usually, when complex traits are at issue, not only are the loci of the responsible genes a priori unknown; the same also holds for the mode of inheritance of the trait, and sometimes even for the phenotype definition. The term mode of inheritance relates to both the genetic mechanism, i.e., the number of loci implicated in the etiology of the disease, and the genotype-phenotype relation, which describes the influence of these loci on the trait. Having an idea of the genetic model can crucially facilitate the mapping process. This holds especially in the context of linkage analysis, where an appropriate parametric model or a suitable nonparametric allele sharing statistic may accordingly be selected. Here, we review the difficulties with parametric and nonparametric linkage analysis when applied to multifactorial diseases. We address the question why it is necessary to adequately model a genetically complex trait in a linkage study, and elucidate the steps to do so. Furthermore, we discuss the value of including unaffected individuals into the analysis, as well as of looking at larger pedigrees, both with parametric and nonparametric methods. Our considerations and suggestions aim at guiding researchers to genotyping individuals at a trait locus as accurately as possible.  相似文献   

7.
Multipoint quantitative-trait linkage analysis in general pedigrees.   总被引:49,自引:12,他引:37       下载免费PDF全文
Multipoint linkage analysis of quantitative-trait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint identity-by-descent (IBD) probability calculations. We extend the sib-pair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a chromosome for each relative pair. We have derived correlations in IBD sharing as a function of chromosomal distance for relative pairs in general pedigrees and provide a simple framework whereby these correlations can be easily obtained for any relative pair related by a single line of descent or by multiple independent lines of descent. Once calculated, the multipoint relative-pair IBDs can be utilized in variance-component linkage analysis, which considers the likelihood of the entire pedigree jointly. Examples are given that use simulated data, demonstrating both the accuracy of QTL localization and the increase in power provided by multipoint analysis with 5-, 10-, and 20-cM marker maps. The general pedigree variance component and IBD estimation methods have been implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package.  相似文献   

8.
Having found evidence for segregation at a major locus for a quantitative trait, a logical next step is to identify those pedigrees in which major-locus segregation is occurring. If the quantitative trait is a risk factor for an associated disease, identifying such segregating pedigrees can be important in classifying families by etiology, in risk assessment, and in suggesting treatment modalities. Identifying segregating pedigrees can also be helpful in selecting pedigrees to include in a subsequent linkage study to map the major locus. Here, we describe a strategy to identify pedigrees segregating at a major locus for a quantitative trait. We apply this pedigree selection strategy to simulated data generated under a major-locus or mixed model with a rare dominant allele and sampled according to one of several fixed-structure or sequential sampling designs. We demonstrate that for the situations considered, the pedigree selection strategy is sensitive and specific and that a linkage study based only on the pedigrees classified as segregating extracts essentially all the linkage information in the entire sample of pedigrees. Our results suggest that for large-scale linkage studies involving many genetic markers, the savings from this strategy can be substantial and that, compared with fixed-structure sampling, sequential sampling of pedigrees can greatly improve the efficiency for linkage analysis of a quantitative trait.  相似文献   

9.
Sung YJ  Wijsman EM 《Human heredity》2007,63(2):144-152
Complex traits are generally believed to be influenced by multiple loci. Identification of loci involved in complex traits is more difficult for interacting than for additive loci. Here we describe an extension of the program lm_twoqtl in the package MORGAN to handle two quantitative trait loci (QTLs) with gene-gene interaction. We investigate whether parametric linkage analysis that accounts for such epistasis improves prospects for linkage detection and accuracy of localization of QTLs. Through use of simulated data we show that analysis that accounts for epistasis provides higher lod scores and better localization than does analysis without epistasis. In addition, we demonstrate that the difference between lod scores in the presence vs. absence of use of an interaction model in analysis is greater in extended than in nuclear pedigrees.  相似文献   

10.
We describe a variance-components method for multipoint linkage analysis that allows joint consideration of a discrete trait and a correlated continuous biological marker (e.g., a disease precursor or associated risk factor) in pedigrees of arbitrary size and complexity. The continuous trait is assumed to be multivariate normally distributed within pedigrees, and the discrete trait is modeled by a threshold process acting on an underlying multivariate normal liability distribution. The liability is allowed to be correlated with the quantitative trait, and the liability and quantitative phenotype may each include covariate effects. Bivariate discrete-continuous observations will be common, but the method easily accommodates qualitative and quantitative phenotypes that are themselves multivariate. Formal likelihood-based tests are described for coincident linkage (i.e., linkage of the traits to distinct quantitative-trait loci [QTLs] that happen to be linked) and pleiotropy (i.e., the same QTL influences both discrete-trait status and the correlated continuous phenotype). The properties of the method are demonstrated by use of simulated data from Genetic Analysis Workshop 10. In a companion paper, the method is applied to data from the Collaborative Study on the Genetics of Alcoholism, in a bivariate linkage analysis of alcoholism diagnoses and P300 amplitude of event-related brain potentials.  相似文献   

11.
Regions of the genome influencing wood and fibre traits in Eucalyptus globulus Labill. have been identified in two full-sib pedigrees that share a common male parent. The first pedigree, cross A, contains 148 progeny, and the second pedigree, cross B, contains 135 progeny. Subsets of progeny of these two controlled crosses were planted at seven sites throughout Australia in 1990. Wood cores were taken at 0.9 m above ground in 1997, and wood and fibre traits were analysed for each individual. Three quantitative trait loci (QTL) affecting wood density, one QTL affecting pulp yield and one QTL affecting microfibril angle have been located in both pedigrees, using single-factor analysis of variance. Other QTLs affecting these traits, as well as fibre length and cellulose content were located in cross A only.  相似文献   

12.
Simulation of pedigree genotypes by random walks.   总被引:11,自引:10,他引:1       下载免费PDF全文
A random walk method, based on the Metropolis algorithm, is developed for simulating the distribution of trait and linkage marker genotypes in pedigrees where trait phenotypes are already known. The method complements techniques suggested by Ploughman and Boehnke and by Ott that are based on sequential sampling of genotypes within a pedigree. These methods are useful for estimating the power of linkage analysis before complete study of a pedigree is undertaken. We apply the random walk technique to a partially penetrant disease, schizophrenia, and to a recessive disease, ataxia-telangiectasia. In the first case we show that accessory phenotypes with higher penetrance than that of schizophrenia itself may be crucial for effective linkage analysis, and in the second case we show that impressionistic selection of informative pedigrees may be misleading.  相似文献   

13.
14.
Our Markov chain Monte Carlo (MCMC) methods were used in linkage analyses of the Framingham Heart Study data using all available pedigrees. Our goal was to detect and map loci associated with covariate-adjusted traits log triglyceride (lnTG) and high-density lipoprotein cholesterol (HDL) using multipoint LOD score analysis, Bayesian oligogenic linkage analysis and identity-by-descent (IBD) scoring methods. Each method used all marker data for all markers on a chromosome. Bayesian linkage analysis detected a linkage signal on chromosome 7 for lnTG and HDL, corroborating previously published results. However, these results were not replicated in a classical linkage analysis of the data or by using IBD scoring methods.We conclude that Bayesian linkage analysis provides a powerful paradigm for mapping trait loci but interpretation of the Bayesian linkage signals is subjective. In the absence of a LOD score method accommodating genetically complex traits and linkage heterogeneity, validation of these signals remains elusive.  相似文献   

15.
Thompson E  Basu S 《Human heredity》2003,56(1-3):119-125
Our objective is the development of robust methods for assessment of evidence for linkage of loci affecting a complex trait to a marker linkage group, using data on extended pedigrees. Using Markov chain Monte Carlo (MCMC) methods, it is possible to sample realizations from the distribution of gene identity by descent (IBD) patterns on a pedigree, conditional on observed data YM at multiple marker loci. Measures of gene IBDW which capture joint genome sharing in extended pedigrees often have unknown and highly skewed distributions, particularly when conditioned on marker data. MCMC provides a direct estimate of the distribution of such measures. Let W be the IBD measure from data YM, and W* the IBD measure from pseudo-data Y*M simulated with the same data availability and genetic marker model as the true data YM, but in the absence of linkage. Then measures of the difference in distributions of W and W* provide evidence for linkage. This approach extracts more information from the data YM than either comparison to the pedigree prior distribution of W or use of statistics that are expectations of W given the data YM. A small example is presented.  相似文献   

16.
Variance component modeling for linkage analysis of quantitative traits is a powerful tool for detecting and locating genes affecting a trait of interest, but the presence of genetic heterogeneity will decrease the power of a linkage study and may even give biased estimates of the location of the quantitative trait loci. Many complex diseases are believed to be influenced by multiple genes and therefore genetic heterogeneity is likely to be present for many real applications of linkage analysis. We consider a mixture of multivariate normals to model locus heterogeneity by allowing only a proportion of the sampled pedigrees to segregate trait-influencing allele(s) at a specific locus. However, for mixtures of normals the classical asymptotic distribution theory of the maximum likelihood estimates does not hold, so tests of linkage and/or heterogeneity are evaluated using resampling methods. It is shown that allowing for genetic heterogeneity leads to an increase in power to detect linkage. This increase is more prominent when the genetic effect of the locus is small or when the percentage of pedigrees not segregating trait-influencing allele(s) at the locus is high.  相似文献   

17.
Lee SH  Van der Werf JH  Tier B 《Genetics》2005,171(4):2063-2072
A linkage analysis for finding inheritance states and haplotype configurations is an essential process for linkage and association mapping. The linkage analysis is routinely based upon observed pedigree information and marker genotypes for individuals in the pedigree. It is not feasible for exact methods to use all such information for a large complex pedigree especially when there are many missing genotypic data. Proposed Markov chain Monte Carlo approaches such as a single-site Gibbs sampler or the meiosis Gibbs sampler are able to handle a complex pedigree with sparse genotypic data; however, they often have reducibility problems, causing biased estimates. We present a combined method, applying the random walk approach to the reducible sites in the meiosis sampler. Therefore, one can efficiently obtain reliable estimates such as identity-by-descent coefficients between individuals based on inheritance states or haplotype configurations, and a wider range of data can be used for mapping of quantitative trait loci within a reasonable time.  相似文献   

18.
Nonparametric linkage analysis is widely used to map susceptibility genes for complex diseases. This paper introduces six nonparametric statistics for measuring marker allele sharing among the affected members of a pedigree. We compare the power of these new statistics and three previous statistics to detect linkage with Mendelian diseases having recessive, additive, and dominant modes of inheritance. The nine statistics represent all possible combinations of three different IBD scoring functions and three different schemes for sampling genes among affecteds. Our results strongly suggest that the statistic T(rec)(blocks) is best for recessive traits, while the two statistics T(kin)(pairs) and T(all)(kin) vie for best for an additive trait. The best statistic for a dominant trait is less clear. The statistics T(kin)(pairs) and T(all)(kin) are equally promising for small sibships, but in extended pedigrees the statistics T(dom)(blocks) and T(dom)(pairs) appear best. For a complex trait, we advocate computing several of these statistics.  相似文献   

19.
BACKGROUND: The genetic factors involved in determining bone mineral density (BMD) have not been fully elucidated. We have begun genetic linkage analysis of seven families in which many members are osteopenic, in order to identify chromosomal loci that are potentially involved in determining BMD. MATERIALS AND METHODS: Spine BMD was measured in 143 members of seven kindred with familial osteopenia. The absolute BMD values for the spine (L2-L4) were converted to the age-, gender-, and weight-adjusted Z scores, and this corrected value was used as the quantitative trait on which to base subsequent genetic analyses. Simulations of linkage were performed in order to determine the information content of the pedigree set, and actual linkage analysis was conducted using polymorphic markers either within or near three candidate loci: COL1A1, COL1A2, and vitamin D receptor (VDR). RESULTS: The distribution of the corrected Z scores was bimodal (p = 0.001) suggesting a monogenic mode of inheritance of the low BMD trait. Simulation of linkage analysis suggested that the family data set was sufficient to detect linkage under a single major gene model. Actual linkage analysis did not support linkage to the three candidate loci. In addition, the VDR genotype was not statistically associated with low bone density at the spine. CONCLUSIONS: Loci other than COL1A1, COL1A2 and VDR are very likely responsible for the low BMD trait observed in these families. These families are suitable for a genome-wide screen using microsatellite repeats in order to identify the loci that are involved in osteopenia.  相似文献   

20.
SUMMARY: Existing linkage-analysis methods address binary or quantitative traits. However, many complex diseases and human conditions, particularly behavioral disorders, are rated on ordinal scales. Herein, we introduce, LOT, a tool that performs linkage analysis of ordinal traits for pedigree data. It implements a latent-variable proportional-odds logistic model that relates inheritance patterns to the distribution of the ordinal trait. The likelihood-ratio test is used for testing evidence of linkage. AVAILABILITY: The LOT program is available for download at http://c2s2.yale.edu/software/LOT/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号