首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cleidocranial dysplasia (CCD) is an autosomal dominant human skeletal disorder comprising hypoplastic clavicles, wide cranial sutures, supernumerary teeth, short stature, and other skeletal abnormalities. It is known that mutations in the human RUNX2 gene mapped at 6p21 are responsible for CCD. We analyzed the mutation patterns of the RUNX2 gene by direct sequencing in six Taiwanese index cases with typical CCD. One of the patients was a familial case and the others were sporadic cases. Sequencing identified four mutations. Three were caused by single nucleotide substitutions, which created a nonsense (p.R391X), two were missense mutations (p.R190W, p.R225Q), and the forth was a novel mutation (c.1119delC), a one-base deletion. Real time quantitative PCR adapted to determine copy numbers of the promoter, all exons and the 3'UTR region of the RUNX2 gene detected the deletion of a single allele in a sporadic case. The results extend the spectrum of RUNX2 mutations in CCD patients and indicate that complete deletions of the RUNX2 gene should be considered in those CCD patients lacking a point mutation detected by direct sequencing.  相似文献   

2.
遗传性先天无虹膜患者的PAX6基因新突变(c.1286delC)   总被引:1,自引:0,他引:1  
孙大光  阳菊华  童绎  赵广健  马旭 《遗传》2008,30(10):1301-1306
摘要: 为了研究遗传性先天无虹膜(Hereditary congenital aniridia)患者发病的分子遗传学机制, 采用PCR扩增PAX6基因编码区的11个外显子(exon 4-13)及外显子和内含子相连接的区域、PCR产物直接测序的方法对1个遗传性先天无虹膜家系的所有成员进行了遗传突变分析。结果表明, 在家系中两个患者的PAX6基因exon 11均存在c. 1286delC新突变。此单个碱基的缺失造成了移码突变, 导致肽链自309位氨基酸开始产生一段含55个氨基酸的异常肽段, 并产生提前终止密码子(Premature termination codon, PTC), 使PAX6蛋白羧基端的59个氨基酸缺失。另外, 通过PCR-RFLP分析的方法对家系中所有正常成员和50名中国汉族健康对照个体基因组DNA进行分析均未检测到该突变。  相似文献   

3.
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder caused by haploinsufficiency of the RUNX2 gene. In this study, we analyzed by direct sequencing RUNX2 mutations from eleven CCD patients. Four of seven mutations were novel: two nonsense mutations resulted in a translational stop at codon 50 (Q50X) and 112 (E112X); a missense mutation converted arginine to glycine at codon 131 (R131G); and an exon 1 splice donor site mutation (donor splice site GT/AT, IVS1 + 1G > A) at exon 1-intron junction resulted in the deletion of QA stretch contained in exon 1 of RUNX2. We focused on the functional analysis of the IVS1 + 1G > A mutation. A full-length cDNA of this mutation was cloned (RUNX2Deltae1) and expressed in Chinese hamster ovary (CHO) and HeLa cells. Functional analysis of RUNX2Deltae1 was performed with respect to protein stability, nuclear localization, DNA binding, and transactivation activity of a downstream RUNX2 target gene. Protein stability of RUNX2Deltae1 is similar to wild-type RUNX2 as determined by Western blot analysis. Subcellular localization of RUNX2Deltae1, assessed by in situ immunofluorescent staining, was observed with partial retention in both the nucleus and cytoplasm. This finding is in contrast to RUNX2 wild-type, which is detected exclusively in the nucleus. DNA binding activity was also compromised by the RUNX2Deltae1 in gel shift assay. Finally, RUNX2Deltae1 blocked transactivation of the osteocalcin gene determined by transient transfection assay. Our findings demonstrate for the first time that the CCD phenotype can be caused by a splice site mutation, which results in the deletion of N-terminus amino acids containing the QA stretch in RUNX2 that contains a previously unidentified second nuclear localization signal (NLS). We postulate that the QA sequence unique to RUNX2 contributes to a competent structure of RUNX2 that is required for nuclear localization, DNA binding, and transactivation function.  相似文献   

4.
Cleidocranial dysplasia (CCD) is an autosomal‐dominant disorder caused by a lack of function of one or more alleles of the RUNX2 gene. Mutations of the RUNX2 gene were analyzed in a family with CCD, and a novel nonsense mutation was identified, c. 1096G > T, p.E366X, which was predicted to cause a number of potential dysfunctions. Western blot analysis showed that the novel mutation created a shortened protein product, which lost 155 aa in the C‐terminal domain. The mutant protein was detected to be localized mostly in the cytoplasm, not in the nucleus, which demonstrated that transport of the RUNX2 protein into the nucleus was disturbed by the p.E366X mutation. For the first time, RUNX2+/m dental pulp cells (DPCs) were isolated from two permanent incisors of the CCD patient. Compared to RUNX2+/+ controls, RUNX2+/m DPCs presented an impeded progression from the G1 to the S phase in the cell cycle, a lower rate of proliferation, weaker ability of calcification, and distinct ultrastructure. More interestingly, the ultrastructural analysis and energy dispersive X‐ray spectrometry (EDS) analysis showed that the CCD tooth exhibited insufficient mineralization of enamel and dentin. This study suggests that the truncated RUNX2 mutant protein may be responsible for the alterations of RUNX2+/m DPCs, and RUNX2 gene may be involved in dental development by affecting the cell growth and differentiation, which provides new insights into understanding of dental abnormalities in CCD patients. J. Cell. Biochem. 111: 1473–1481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.

Objective

Dyschromatosis universalis hereditaria (DUH) is a rare heterogeneous pigmentary genodermatosis, which was first described in 1933. The genetic cause has recently been discovered by the discovery of mutations in ABCB6. Here we investigated a Chinese family with typical features of autosomal dominant DUH and 3 unrelated patients with sporadic DUH.

Methods

Skin tissues were obtained from the proband, of this family and the 3 sporadic patients. Histopathological examination and immunohistochemical analysis of ABCB6 were performed. Peripheral blood DNA samples were obtained from 21 affected, 14 unaffected, 11 spouses in the family and the 3 sporadic patients. A genome-wide linkage scan for the family was carried out to localize the causative gene. Exome sequencing was performed from 3 affected and 1 unaffected in the family. Sanger sequencing of ABCB6 was further used to identify the causative gene for all samples obtained from available family members, the 3 sporadic patients and a panel of 455 ethnically-matched normal Chinese individuals.

Results

Histopathological analysis showed melanocytes in normal control’s skin tissue and the hyperpigmented area contained more melanized, mature melanosomes than those within the hypopigmented areas. Empty immature melanosomes were found in the hypopigmented melanocytes. Parametric multipoint linkage analysis produced a HLOD score of 4.68, with markers on chromosome 2q35-q37.2. A missense mutation (c.1663 C>A, p.Gln555Lys) in ABCB6 was identified in this family by exome and Sanger sequencing. The mutation perfectly cosegregated with the skin phenotype. An additional mutation (g.776 delC, c.459 delC) in ABCB6 was found in an unrelated sporadic patient. No mutation in ABCB6 was discovered in the other two sporadic patients. Neither of the two mutations was present in the 455 controls. Melanocytes showed positive immunoreactivity to ABCB6.

Conclusion

Our data add new variants to the repertoire of ABCB6 mutations with DUH.  相似文献   

6.
Xuan D  Li S  Zhang X  Lin L  Wang C  Zhang J 《Biochemical genetics》2008,46(11-12):702-707
Cleidocranial dysplasia (CCD) is an autosomal-dominant heritable skeletal disease caused by heterozygous mutations in the RUNX2 gene. Here, the RUNX2 gene was analyzed within a CCD family from China, and a novel missense mutation (c. 475G --> C [p.G159R]) was identified. Normal and mutant RUNX2 expression vectors were then constructed and expressed transiently in NIH3T3 cells. Immunofluorescent staining and Western blotting showed that wild-type RUNX2 protein was localized exclusively in the nucleus; however, the mutant protein was found in both the nucleus and the cytoplasm, which demonstrated that transport of the RUNX2 mutant into the nucleus was disturbed by the G159R mutation. Therefore, we suggest that G159 is very important to promote RUNX2 nuclear localization. According to clinical analysis, the patient displays severe dysplasia of bones and relatively low-grade craniofacial abnormality, and we infer that G159 may be vital for normal skeletal development, other than control of tooth number. These findings confirm that mutations in the RUNX2 gene are associated with the pathogenesis of CCD across different ethnic backgrounds.  相似文献   

7.
Congenital cataract is a clinically and genetically heterogeneous group of eye disorders that causes visual impairment and childhood blindness. The purpose of this study was to identify the genetic defect associated with autosomal dominant congenital perinuclear cataract in a Chinese family. A detailed family history and clinical data of the family were recorded, and candidate gene sequencing was performed to screen for mutation-causing disease in our study. Direct sequencing revealed a c.601G>A (p.E201K) transversion in exon 2 of GJA8. This mutation co-segregated with all affected individuals in the family and was not found in unaffected family members or 100 unrelated controls. The function and mechanism of novel GJA8 point mutation E201K in Chinese patients were then investigated in this study. We found E201K aberrantly located in cytoplasm and prevented its location in the plasma membrane. Induction of E201K expression led to a decrease in cell growth and viability by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Our study provides important evidence that GJA8 is a disease-causing gene for congenital cataract and that mutation of GJA8 has a potential causative effect.  相似文献   

8.
线粒体DNA突变与许多人类疾病的发病机制相关。文章报道1例典型的患有耳聋与癫痫症状的具有母系遗传特征的中国家系。该家系共3代人, 其中14名母系成员中有3名耳聋患者, 3名癫痫患者, 而其他成员则无临床症状。线粒体全基因组序列分析表明, tRNASer(UCN)基因7472delC新突变和33个多态位点属于东亚单体型B4b1a2。7472delC突变位于tRNASer(UCN)高度保守的T-arm上。而在该区域的相同位点7472insC突变已在多个无遗传相关的家系中被发现与耳聋和癫痫相关。7472insC突变使tRNA代谢和线粒体功能产生缺陷。这样与7472insC突变相近的7472delC突变可能也会以相似机制引起线粒体功能障碍。同时, 在该家系中未发现GJB2基因及其他线粒体基因突变。因此, tRNASer(UCN) 7472delC可能是耳聋与癫痫相关的线粒体基因新突变。  相似文献   

9.
通过PCR和直接测序的方法,对一性连锁Alport综合征家系17个受检个体的COL4A5基因所有51个外显子及其相邻内含子的DNA序列进行检测。结果发现,在第26外显子2240位点,男患者存在C碱基缺失(2240delc),女患者存在杂合缺失,同时对女患者相应的PCR产物进行克隆和测序以验证PCR测序结果的可靠性,而在正常家系成员和80例对照中均未发现此位点异常,说明2240delc为引起该家系临床病变的突变位点,不是多态性位点。在性连锁Alport综合征中,COL4A5基因的这个单碱基缺失突变位点为首次报道。  相似文献   

10.
The aim of this study was to analyze the CBFA1 gene in a phenotypically variable family with autosomal dominant cleidocranial dysplasia (CCD). Five members of a family with CCD were characterized clinically. X-rays and photographs of the two clinically affected family members were taken. The genotype of all five affected family members was determined with the use of single strand conformation polymorphism (SSCP) and direct sequencing. A point-mutation in exon 2 (R148G) was detected in a patient with the full-blown clinical phenotype. His son, demonstrating the same mutation, showed only the dental CCD characteristics. No mutation could be found in the three clinically healthy family members. To conclude, a missense mutation in the CBFA1 gene was detected in a family with variably expressed CCD syndrome. A detailed clinical examination is necessary to detect minimally affected gene mutation carriers.  相似文献   

11.
Congenital nephrotic syndrome of the Finnish type (CNF) is a lethal, autosomal recessive disorder mainly caused by mutations in the NPHS1 gene; it is found at a relatively high frequency in Finns. We investigated the disease-causing mutations in a Chinese family with CNF and developed a prenatal genetic diagnosis for their latest pregnancy. Mutation analysis was made of all exons and exon/intron boundaries of NPHS1 in the fetus, parents and 50 unrelated controls using PCR and direct sequencing. A heterozygous nonsense mutation within exon 20 (c.2783C>A) and a missense mutation within exon 17 (c.2225T>C) in NPHS1 were detected in the proband's father and mother, respectively, but were not found in the fetus or in 50 unrelated controls. Two novel mutations of c.2783C>A and c.2225T>C in NPHS1 were found to be causative in this Chinese CNF family with no known Finnish ancestry. The most recent sibling did not inherit these two mutations and hence was unaffected with CNF. Determining the cumulative number and ethnic distribution of known mutations can help expedite further study of the pathogenesis of CNF.  相似文献   

12.
Zhang S  Wang L  Hao Y  Wang P  Hao P  Yin K  Wang QK  Liu M 《Mitochondrion》2008,8(3):205-210
Leber's hereditary optic neuropathy (LHON) is a maternally inherited ocular disease which has been associated with three primary mitochondrial DNA mutations: G3640A, G11778A, and T14484C. In this study, we clinically characterized a Chinese family with complete penetrance of LHON. The patients in the family presented with variable clinical features. By direct DNA sequence analysis, we identified both T14484C mutation and a nearby T to C variant at nucleotide 14502 of mitochondria DNA. The T14502C variant altered I58 to V of the protein ND6, which was present in all patients of the family, but not in four unaffected family members and 200 normal controls. The co-existence of both T14484C mutation and T14502C substitution in all patients from the same LHON family suggests that T14502C may play a synergistic role with the primary mutation T14484C. The two variants together may account for the complete penetrance and absence of marked gender bias and visual recovery in the Chinese LHON family although we cannot exclude the possibility of simultaneous involvement of additional mitochondrial variant(s).  相似文献   

13.
Cleidocranial dysplasia (CCD) is caused by haploinsufficiency in RUNX2 function. We have previously identified a series of RUNX2 mutations in Korean CCD patients, including a novel R131G missense mutation in the Runt‐homology domain. Here, we examine the functional consequences of the RUNX2R131G mutation, which could potentially affect DNA binding, nuclear localization signal, and/or heterodimerization with core‐binding factor‐β (CBF‐β). Immunofluorescence microscopy and western blot analysis with subcellular fractions show that RUNX2R131G is localized in the nucleus. Immunoprecipitation analysis reveals that heterodimerization with CBF‐β is retained. However, precipitation assays with biotinylated oligonucleotides and reporter gene assays with RUNX2 responsive promoters together reveal that DNA‐binding activity and consequently the transactivation of potential of RUNX2R131G is abrogated. We conclude that loss of DNA binding, but not nuclear localization or CBF‐β heterodimerization, causes RUNX2 haploinsufficiency in patients with the RUNX2R131G mutation. Retention of specific functions including nuclear localization and binding to CBF‐β of the RUNX2R131G mutation may render the mutant protein an effective competitor that interferes with wild‐type function. J. Cell. Biochem. 110: 97–103, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
In order to further understand the role of fibrillin-1 (FBN1, OMIM 134797) perturbations in the pathogenesis of Marfan syndrome (MFS, OMIM 154700) we studied a Han Chinese family in which MFS was segregating. In the Chinese family with 5 affected members, mutation screening for FBN1 was performed using direct sequencing. A novel non-synonymous mutation in the transforming growth factor beta binding protein-like (TB) domain of the FBN1 gene was found. The missense mutation c.3022T>C (C1008R) located in exon 24. This mutation was present in the proband and in two other affected family members, but in neither unaffected family members nor unrelated control subjects. The novel non-synonymous mutation, c.3022T>C (C1008R) in the TB domain of FBN1 gene, may be involved in the pathogenesis of MFS in a Han Chinese family.  相似文献   

15.

Background

Mutations in the PRRT2 gene have been identified as the major cause of benign familial infantile epilepsy (BFIE), paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with paroxysmal choreoathetosis/dyskinesias (ICCA). Here, we analyzed the phenotypes and PRRT2 mutations in Chinese families with BFIE and ICCA.

Methods

Clinical data were collected from 22 families with BFIE and eight families with ICCA. PRRT2 mutations were screened using PCR and direct sequencing.

Results

Ninety-five family members were clinically affected in the 22 BFIE families. During follow-up, two probands had one seizure induced by diarrhea at the age of two years. Thirty-one family members were affected in the eight ICCA families, including 11 individuals with benign infantile epilepsy, nine with PKD, and 11 with benign infantile epilepsy followed by PKD. Two individuals in one ICCA family had PKD or ICCA co-existing with migraine. One affected member in another ICCA family had experienced a fever-induced seizure at 7 years old. PRRT2 mutations were detected in 13 of the 22 BFIE families. The mutation c.649_650insC (p.R217PfsX8) was found in nine families. The mutations c.649delC (p.R217EfsX12) and c.904_905insG (p.D302GfsX39) were identified in three families and one family, respectively. PRRT2 mutations were identified in all eight ICCA families, including c.649_650insC (p.R217PfsX8), c.649delC (p.R217EfsX12), c.514_517delTCTG (p.S172RfsX3) and c.1023A?>?T (X341C). c.1023A?>?T is a novel mutation predicted to elongate the C-terminus of the protein by 28 residues.

Conclusions

Our data demonstrated that PRRT2 is the major causative gene of BFIE and ICCA in Chinese families. Site c.649 is a mutation hotspot: c.649_650insC is the most common mutation, and c.649delC is the second most common mutation in Chinese families with BFIE and ICCA. As far as we know, c.1023A?>?T is the first reported mutation in exon 4 of PRRT2. c.649delC was previously reported in PKD, ICCA and hemiplegic migraine families, but we further detected it in BFIE-only families. c.904_905insG was reported in an ICCA family, but we identified it in a BFIE family. c.514_517delTCTG was previously reported in a PKD family, but we identified it in an ICCA family. Migraine and febrile seizures plus could co-exist in ICCA families.
  相似文献   

16.
The prevalence of connexin 26 ( GJB2) mutations in the Chinese population   总被引:35,自引:0,他引:35  
Mutations in GJB2, encoding gap junction beta 2 protein (connexin 26), are responsible for the commonest form of non-syndromic recessive deafness in many populations. It has been reported recently that the most common 35delG mutation in GJB2 is exceptionally low in Japanese and Korean populations, but another deletion, 235delC, is relatively frequent. Since the Chinese constitute approximately one fifth of the global population, the frequency of GJB2 mutations in the population has important implications for understanding worldwide causes of genetic deafness. To determine whether GJB2 mutations are an important cause of deafness in Chinese, we conducted mutation screening for GJB2 in 118 deaf Chinese probands, including 60 from simplex and 58 from multiplex families with non-syndromic deafness, and 150 normal hearing Chinese controls. Four mutations, including 235delC, 299-300delAT, V37I, and 35delG, were found in the patients. Thirty-nine percent of the probands had a GJB2mutation. Of the 118 probands, 19 carried two definitely pathogenic mutations: three among the 58 multiplex cases (5.2%) and 16 among the 60 simplex cases (26.7%). Twenty-seven probands (22.9%) were found to carry only single GJB2 mutations. None of them had mutations in exon 1 of GJB2 and or the 342-kb deletion of GJB6. The 235delC mutation was the most prevalent mutation (20.3% of alleles), accounting for 81% of the pathologic alleles in multiplex cases and 67% in simplex cases. Analysis of the affected haplotypes in the patients with the homozygous 235delC mutation yielded evidence for a single origin of the mutation. The carrier frequency of the 235delC mutation in control subjects with normal hearing was 1.3%. The 35delG mutation was only noted as a heterozygous change in two simplex cases (1.2% of alleles). These results indicated that mutations in GJB2 are a major cause of inherited and sporadic congenital deafness in the Chinese population. The 235delC mutation, rather than 35delG, is the most common mutation found in the Chinese deaf population. Our data support the view that specific combinations of GJB2 mutation exist in different populations.  相似文献   

17.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that is inherited as an autosomal dominant trait in ~ 10% of cases. Recently we and others identified several single-base mutations in the Cu/Zn superoxide dismutase (SOD1) gene in patients with familial ALS (FALS). Using single-strand conformational polymorphism, we studied the C to G mutation in exon 2 of the SOD1 gene (resulting in a leucine to valine substitution in position 38) in affected and unaffected members of a large Belgian family with FALS. We measured the SOD1 activity in red blood cell lysates in 14 members of this family, including the only surviving clinically affected patient. SOD1 activity of the family members carrying the mutation was less than half that of members without the mutation. In addition, in 11 patients with sporadic ALS and 11 age- and sex-matched controls, red blood cell SOD1 activity was normal. These studies indicate that SOD1 activity is reduced in these FALS patients but not in sporadic ALS patients. Moreover, this SOD1 enzyme abnormality is detectable years before onset of clinical ALS in carriers of this FALS mutation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号