首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
Studies have demonstrated cross talk between beta-catenin and peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways. Specifically, activation of PPARgamma induces the proteasomal degradation of beta-catenin in cells that express an adenomatous polyposis coli-containing destruction complex. In contrast, oncogenic beta-catenin is resistant to such degradation and inhibits the expression of PPARgamma target genes. In the present studies, we demonstrate a functional interaction between beta-catenin and PPARgamma that involves the T-cell factor (TCF)/lymphocyte enhancer factor (LEF) binding domain of beta-catenin and a catenin binding domain (CBD) within PPARgamma. Mutation of K312 and K435 in the TCF/LEF binding domain of an oncogenic beta-catenin (S37A) significantly reduces its ability to interact with and inhibit the activity of PPARgamma. Furthermore, these mutations render S37A beta-catenin susceptible to proteasomal degradation in response to activation of PPARgamma. Mutation of F372 within the CBD (helices 7 and 8) of PPARgamma disrupts its binding to beta-catenin and significantly reduces the ability of PPARgamma to induce the proteasomal degradation of beta-catenin. We suggest that in normal cells, PPARgamma can function to suppress tumorigenesis and/or Wnt signaling by targeting phosphorylated beta-catenin to the proteasome through a process involving its CBD. In contrast, oncogenic beta-catenin resists proteasomal degradation by inhibiting PPARgamma activity, which requires its TCF/LEF binding domain.  相似文献   

5.
6.
7.
Animal studies reveal that fasting and caloric restriction produce increased activity of specific metabolic pathways involved in resistance to weight loss in liver. Evidence suggests that this phenomenon may in part occur through the action of the constitutive androstane receptor (CAR, NR1I3). Currently, the precise molecular mechanisms that activate CAR during fasting are unknown. We show that fasting coordinately induces expression of genes encoding peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), CAR, cytochrome P-450 2b10 (Cyp2b10), UDP-glucuronosyltransferase 1a1 (Ugt1a1), sulfotransferase 2a1 (Sult2a1), and organic anion-transporting polypeptide 2 (Oatp2) in liver in mice. Treatments that elevate intracellular cAMP levels also produce increased expression of these genes in cultured hepatocytes. Our data show that PGC-1alpha interaction with hepatocyte nuclear factor 4alpha (HNF4alpha, NR2A1) directly regulates CAR gene expression through a novel and evolutionarily conserved HNF4-response element (HNF4-RE) located in its proximal promoter. Expression of PGC-1alpha in cells increases CAR expression and ligand-independent CAR activity. Genetic studies reveal that hepatic expression of HNF4alpha is required to produce fasting-inducible CAR expression and activity. Taken together, our data show that fasting produces increased expression of genes encoding key metabolic enzymes and an uptake transporter protein through a network of interactions involving cAMP, PGC-1alpha, HNF4alpha, CAR, and CAR target genes in liver. Given the recent finding that mice lacking CAR exhibit a profound decrease in resistance to weight loss during extended periods of caloric restriction, our findings have important implications in the development of drugs for the treatment of obesity and related diseases.  相似文献   

8.
Although abnormalities in cardiac fatty acid metabolism are involved in the development of several cardiac pathologies, the mechanisms underlying these changes are not well understood. Given the prominent role played by peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta in cardiac fatty acid metabolism, the aim of this study was to examine the effects of nuclear factor (NF)-kappaB activation on the activity of this nuclear receptor. Embryonic rat heart-derived H9c2 cells stimulated with lipopolysaccharide (LPS) showed a reduction (38%, P<0.05) in the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK4) that was prevented in the presence of the NF-kappaB inhibitors parthenolide (10 microM) and atorvastatin (10 microM). Electrophoretic mobility shift assay revealed that both parthenolide and atorvastatin significantly decreased LPS-stimulated NF-kappaB binding activity in H9c2 cardiac cells. LPS-stimulation of H9c2 cardiac cells also led to a 30% reduction (P<0.05) in the mRNA levels of PPARgamma Coactivator 1 (PGC-1) that was consistent with the reduction in the protein levels of this coactivator. In the presence of either atorvastatin or parthenolide, the reduction in PGC-1 expression was prevented. Co-immunoprecipitation studies showed that LPS-stimulation led to a reduction in the physical interaction between PGC-1 and PPARbeta/delta and that this reduction was prevented in the presence of atorvastatin. Finally, electrophoretic mobility shift assay revealed that parthenolide and atorvastatin prevented LPS-mediated reduction in PPARbeta/delta binding activity in H9c2 cardiac cells. These results suggest that LPS-mediated NF-kappaB activation inhibits the expression of genes involved in fatty acid metabolism by a mechanism involving reduced expression of PGC-1, which in turn affects the PPARbeta/delta transactivation of target genes involved in cardiac fatty acid oxidation.  相似文献   

9.
Zhang ZF  Yang N  Zhao G  Zhu L  Wang LX 《PloS one》2012,7(1):e30551

Background

Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, has been implicated playing a role in the development of inflammatory bowel disease (IBD). However, previous studies evaluating the association between the PPARγ2 Pro12Ala polymorphism and IBD are inconsistent. We performed a meta-analysis to determine whether the PPARγ2 Pro12Ala mutation was associated with the presence of IBD.

Methods and Findings

Electronic databases were searched for case-control studies evaluating the association between the Pro12Ala mutation and the presence of IBD. Effects were summarized with the methods recommended by the Cochrane Collaboration. A total of 7 studies including 1002 ulcerative colitis (UC) cases, 1090 Crohǹs disease (CD) cases and 1983 controls were involved in this meta-analysis. In the overall analysis, no significant association of this polymorphism with UC or CD was found. In the subgroup analyses in different populations, AlaAla genotype seemed to protect the European Caucasian population against the development of CD (Pro vs Ala: OR = 1.135, 95%CI = 0.951–1.354, P = 0.162, Bon = 1.000; ProPro vs ProAla: OR = 1.042, 95%CI = 0.852–1.273, P = 0.690, Bon = 1.000; ProPro vs AlaAla: OR = 2.379, 95%CI = 1.110–5.100, P = 0.026, Bon = 0.156; ProAla vs AlaAla: OR = 2.315, 95%CI = 1.064–5.037, P = 0.034, Bon = 0.204; Pro homozygotes vs Ala positives: OR = 1.094, 95%CI = 0.899–1.330, P = 0.371, Bon = 1.000; Pro positives vs Ala homozygotes: OR = 2.360, 95%CI = 1.103–5.053, P = 0.027, Bon = 0.162; heterozygotes vs all homozygotes: OR = 0.976, 95%CI = 0.799–1.192, P = 0.809, Bon = 1.000). There was no significant association of this polymorphism with UC or CD in the East Asian population and the Turkish population.

Conclusion

AlaAla genotype may be a protective factor in the European Caucasian population against the development of CD in a recessive way.  相似文献   

10.
11.
12.
The association between Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma (PPAR) and polycystic ovary syndrome (PCOS) has been investigated in several studies, whereas results were often incompatible. We conducted a meta-analysis to evaluate the association of Pro12Ala polymorphism in PPAR with PCOS susceptibility. A meta-analysis was performed on the published studies before November, 2011. Meta-analysis was performed for genotypes CG versus CC, CG+GG versus CC and G allele versus C allele in a fixed effect model. The combined odds ratio (OR) with 95?% confidence interval (95?% CI) was calculated to estimate the strength of the association. A total of 13 studies including 1,598 cases and 1,881 controls were enrolled. Ultimately, sensitivity analysis demonstrated that, in total, there was no significant association between Pro12Ala polymorphism and PCOS in the contrast of G allele versus C allele OR?=?0.84 (95?% CI 0.69-1.04) and in Europeans, no significant association in the comparison of G allele versus C allele (OR?=?0.84, 95?% CI 0.67-1.06) was also indicated. In summary, according to the results of our meta-analysis, strictly, the Pro12Ala polymorphism did not significantly associate with PCOS, though the protective trend of G allele existed.  相似文献   

13.
Abstract

Peroxisome proliferator-activated receptorγ (PPARγ) can regulate the process of cell apoptosis and is related to the progression of renal disorders. Retinoic acid receptor alpha (RARα) is one of the nuclear receptors involved in a variety of kidney diseases. Renal interstitial fibrosis (RIF) is a common denominator of chronic kidney disease (CKD). This study investigated whether a potential signaling pathway existed between PPARγ and RARα in RIF rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into four groups: a model group subjected to UUO (GU), and three other groups treated with rosiglitazone sodium (GRS), GW9662 and dimethyl sulfoxide (DMSO), n?=?40, respectively. Renal tissues were collected two and four weeks after post-surgery. The relevant indicators were detected. In comparison with the GU group, the expressions of PPARγ and RARα (protein and mRNA) were increased in the GRS group, and decreased in the GW9662 group (all p?<?0.01). The RIF index, mRNA and protein expression of transforming growth factor-β1 (TGF-β1), and the protein expressions of collagen-IV (Col-IV) and fibronectin (FN) in the GRS group were more markedly reduced than those in the GU group; their levels in the GW9662 group were elevated (all p?<?0.01). PPARγ or RARα was negatively correlated to the RIF index, TGF-β1, Col-IV and FN. PPARγ was positively correlated with RARα (all p?<?0.01). In conclusion, PPARγ agonist can elevate the expression of PPARγ or RARα in RIF rats. There might be a potential signaling pathway between PPARγ and RARα in RIF disease.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The functional interaction between the peroxisome proliferator-activated receptor gamma (PPARgamma) and its coactivator PGC-1alpha is crucial for the normal physiology of PPARgamma and its pharmacological response to antidiabetic treatment with rosiglitazone. Here we report the crystal structure of the PPARgamma ligand-binding domain bound to rosiglitazone and to a large PGC-1alpha fragment that contains two LXXLL-related motifs. The structure reveals critical contacts mediated through the first LXXLL motif of PGC-1alpha and the PPARgamma coactivator binding site. Through a combination of biochemical and structural studies, we demonstrate that the first LXXLL motif is the most potent among all nuclear receptor coactivator motifs tested, and only this motif of the two LXXLL-related motifs in PGC-1alpha is capable of binding to PPARgamma. Our studies reveal that the strong interaction of PGC-1alpha and PPARgamma is mediated through both hydrophobic and specific polar interactions. Mutations within the context of the full-length PGC-1alpha indicate that the first PGC-1alpha motif is necessary and sufficient for PGC-1alpha to coactivate PPARgamma in the presence or absence of rosiglitazone. These results provide a molecular basis for specific recruitment and functional interplay between PPARgamma and PGC-1alpha in glucose homeostasis and adipocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号