首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-cell communication via the production and detection of chemical signal molecules has been the focus of a great deal of research over the past decade. One class of chemical signals widely used by proteobacteria consists of N-acyl-homoserine lactones, which are synthesized by proteins related to LuxI of Vibrio fischeri and are detected by proteins related to the V. fischeri LuxR protein. A related marine bacterium, Vibrio harveyi, communicates using two chemical signals, one of which, autoinducer-2 (AI-2), is a furanone borate diester that is synthesized by the LuxS protein and detected by a periplasmic protein called LuxP. Evidence from a number of laboratories suggests that AI-2 may be used as a signal by diverse groups of bacteria, and might permit intergeneric signalling. These two families of signalling systems have been studied from the perspectives of physiology, ecology, biochemistry, and more recently, structural biology. Here, we review the biochemistry and structural biology of both acyl-homoserine-lactone-dependent and AI-2-dependent signalling systems.  相似文献   

2.
Bioactive peptides are a group of diverse intercellular signalling molecules. Almost half a century of research on this topic has resulted in an enormous amount of data. In this essay, a general perspective to interpret all these data will be given. In classical endocrinology, neuropeptides were thought of as simple signalling molecules that each elicit one response. However, the fact that the total bioactive peptide signal is far from simple puts this view under pressure. Cells and tissues express many different bioactive peptides and they are also able to respond to many different bioactive peptides, indicating that multiple receptors and signal transduction pathways are present in a single cell. Therefore, the authors suggest that the bioactive peptide signalling system should be regarded in the context of network and systems biology. Bioactive peptides can best be viewed as an extension of the protein interaction network that allows regulating and fine‐tuning the metabolism of the different cells and tissues in the body. The cell thus responds to the ‘peptidome’ instead of to a single peptide. The intracellular part of this signalling network consists of the various signalling transduction cascades. Recently, new systems biology approaches have emerged for the modelling of cell signalling. The network and systems biology approach is also able to shed new light on the evolution of intercellular signalling.  相似文献   

3.
PNA technology     
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.  相似文献   

4.
The biology of basement membrane proteoglycans extends far beyond the original notion of anionic filters. These complex molecules have dual roles as structural constituents of basement membranes and functional regulators of several growth-factor signalling pathways. As such, they are involved in angiogenesis and, consequently, in tumour progression and their partial or total absence causes several congenital defects that affect the musculoskeletal, cardiovascular and nervous systems. New findings indicate a potential functional coupling between the intricate make-up of basement membrane proteoglycans and their ability to control important biological processes.  相似文献   

5.
Modern molecular biological studies have significantly improved understanding of structural and functional organization of the female reproductive system. The paper gives a brief overview of the literature and own research on verification and expression in the endometrium and placenta of many peptides, biogenic amines, steroids, cytokines and other signalling molecules, which, acting as hormones, enzymes, inhibitors, receptors, growth factors, immunoregulatory agents, transport's and binding proteins, provide the local regulation of intercellular neuroimmunoendocrine relationships that play a key role in the mechanisms of human embryogenesis and reproduction.  相似文献   

6.
Heparan sulphate (HS) glycosaminoglycans (GAGs) are an integral part of the signalling complex of fibroblast derived growth factor (FGF) family members, HS being regarded as a coreceptor. FGFs are also retained in the tissues by binding to HS structures. Early studies on the contribution of the bone marrow stroma to haemopoiesis suggested that cytokines with a role in haemopoiesis were similarly retained in the stroma through interactions with HS. However, the functional outcomes of these cytokines binding HS were poorly understood. Here the GAG-binding properties of cytokines of the four alpha-helical bundle family and the biological consequences of such binding are reviewed. From this analysis it is apparent that although many of these cytokines do bind GAGs, GAG binding is not a consistent feature, nor is the site of GAG binding conserved among these cytokines. The biological outcome of GAG binding depends, in part, on the location of the GAG-binding site on the cytokine. In some cases GAG binding appears to block signalling, whereas in others signalling is likely to be facilitated by binding. It is postulated that the interactions of these cytokines with their receptor complexes evolved independently of GAG binding, with GAG binding being an additional feature for a subset of this cytokine family. Nevertheless, because GAG binding localizes cytokines to sites within tissues, these interactions are likely to be critically important for the biology of these cytokines.  相似文献   

7.
The complex nature of intracellular calcium storage pools has been examined at many levels in the past year. Additional molecules associated with calcium stores have been identified and their localization examined. The convergence of molecular biology, cell biology and biochemistry has now allowed the details of calcium signalling to be meaningfully explored.  相似文献   

8.
This review describes the progress that has been made in understanding the PI3-K-PKB-mTOR signalling pathway by using small molecules as pharmacological probes. It briefly covers the structural characteristics, regulation of and downstream effects of several key regulators of PI3-K-PKB-mTOR signalling, then highlights the use of small molecules (by structural type) to selectively modulate specific components of the pathway.  相似文献   

9.
The GM-CSF, IL-3 and IL-5 family of cytokines, also known as the βc family due to their receptors sharing the signalling subunit βc, regulates multiple biological processes such as native and adaptive immunity, inflammation, normal and malignant hemopoieis, and autoimmunity. Australian scientists played a major role in the discovery and biological characterisation of the βc cytokines and their recent work is revealing unique features of cytokine receptor assembly and signalling. Furthermore, specific antibodies have been generated to modulate their function. Characterisation of the structural and dynamic requirements for the activation of the βc receptor family and the molecular definition of downstream signalling pathways are providing new insights into cytokine receptor signalling as well as new therapeutic opportunities.  相似文献   

10.
11.
Peptides serve as important signalling molecules in development and differentiation in the simple metazoan Hydra. A systematic approach (The Hydra Peptide Project) has revealed that Hydra contains several hundreds of peptide signalling molecules, some of which are neuropeptides and others emanate from epithelial cells. These peptides control biological processes as diverse as muscle contraction, neuron differentiation, and the positional value gradient. Signal peptides cause changes in cell behaviour by controlling target genes such as matrix metalloproteases. The abundance of peptides in Hydra raises the question of whether, in early metazoan evolution, cell-cell communication was based mainly on these small molecules rather than on the growth-factor-like cytokines that control differentiation and development in higher animals.  相似文献   

12.
The application of small molecules has played a crucial role in identifying novel components involved in plant signalling. Compared to classic genetic approaches, small molecule screens offer notable advantages in dissecting plant biological processes, such as technical simplicity, low start-up costs, and most importantly, bypassing the problems of lethality and redundancy. To identify small molecules that target a biological process or protein of interest, robust and well-reasoned high-throughput screening approaches are essential. In this review, we present a series of principles and valuable approaches in small molecule screening in the plant model system Arabidopsis thaliana. We also provide an overview of small molecules that led to breakthroughs in uncovering phytohormone signalling pathways, endomembrane signalling cascades, novel growth regulators, and plant defence mechanisms. Meanwhile, the strategies to deciphering the mechanisms of these small molecules on Arabidopsis are highlighted. Moreover, the opportunities and challenges of small molecule applications in translational biology are discussed.  相似文献   

13.
Disordered regions are segments of a protein that do not fold completely and thus remain flexible. These regions have key physiological roles, particularly in phospho-proteins, which are enriched in disorder-promoting residues surrounding their phosphorylation sites. 14-3-3 proteins are ordered hubs that interact with multiple and diverse intrinsically disordered phosphorylated targets. This provides 14-3-3 with the ability to participate in and to regulate multiple signalling networks. Here, I review the effect of structural disorder on the mechanism involved in 14-3-3 protein-protein interactions and how 14-3-3 impacts cell biology through disordered ligands. How 14-3-3 proteins constitute an advantageous system to identify novel classes of biological tools is discussed with a special emphasis on a particular-and innovative-use of small molecules to stabilize 14-3-3 protein complexes, useful to study gene expression, cancer signalling and neurodegenerative diseases.  相似文献   

14.
During the development of a given organ or tissue within a multicellular organism, growth and patterning are controlled in a coordinated manner by the activity of a discrete number of signalling molecules and their corresponding pathways to give rise to a well formed structure with a particular size, shape and pattern. Understanding how cells of different tissues or organs translate in a context dependent manner the activity of these pathways into an activation or repression of the cell cycle machinery is one of the most intriguing questions in developmental and cancer biology nowadays. Here we revise the different roles of the signalling molecules Notch and Wingless in the regulation of cell cycle progression in the developing eye and wing imaginal discs of Drosophila and propose that depending on how growth regulators are regulated in a context dependent manner by the activity of these pathways, signalling molecules might have tumour suppressor or oncogene activity.  相似文献   

15.
Nitric oxide (NO) has recently joined the select circle of the ubiquitous molecules of plant signalling networks. Indeed, the last decade has produced a tremendous amount of data that evidence the diversity of physiological situations in which NO is involved in plants and the complexity of NO biology. These data also underline our difficulties in providing simple answers to the cardinal questions of where NO comes from and how the NO message is converted into a physiological response. The identification of NO primary targets and NO-regulated genes provides new opportunities to connect NO biochemistry and NO biology. This review summarises our current understanding of NO signalling, from the generation of the NO message to its execution into a cellular response. The review particularly considers whether and how NO may be responsible for specific signalling in different physiological processes.  相似文献   

16.
This review focuses on the mechanisms of stress response in the synovial tissue of rheumatoid arthritis. The major stress factors, such as heat stress, shear stress, proinflammatory cytokines and oxidative stress, are discussed and reviewed, focusing on their potential to induce a stress response in the synovial tissue. Several pathways of stress signalling molecules are found to be activated in the synovial membrane of rheumatoid arthritis; of these the most important examples are heat shock proteins, mitogen-activated protein kinases, stress-activated protein kinases and molecules involved in the oxidative stress pathways. The expression of these pathways in vitro and in vivo as well as the consequences of stress signalling in the rheumatoid synovium are discussed. Stress signalling is part of a cellular response to potentially harmful stimuli and thus is essentially involved in the process of synovitis. Stress signalling pathways are therefore new and promising targets of future anti-rheumatic therapies.  相似文献   

17.
Rittschof D  Cohen JH 《Peptides》2004,25(9):1503-1516
Crustacean peptide pheromones, kairomones, and substituted amino sugar kairomones are reviewed from a historical perspective. These crustacean information molecules are secondary functions of structural polymers. They are partial hydrolysis products, generated usually by the action of trypsin-like enzymes on proteins, and glycosidase enzymes on glycoproteins and proteoglycans. Structure-function studies based upon synthetic mimics of peptide information molecules show neutral amino acids with a basic carboxyl terminal are active in modifying physiological and or behavioral responses. Behaviorally active substituted amino sugar mimics are disaccharide hydrolysis products of heparin and chondroitin sulfate. Similar molecules are also used as information molecules by a variety of other marine organisms indicating they are a common biological theme.  相似文献   

18.
The term quorum sensing (QS) is used to describe the communication between bacterial cells, whereby a coordinated population response is controlled by diffusible molecules produced by individuals. QS has not only been described between cells of the same species (intraspecies), but also between species (interspecies) and between bacteria and higher organisms (inter-kingdom). The fact that QS-based communication appears to be widespread among microbes is strange, considering that explaining both cooperation and communication are two of the greatest problems in evolutionary biology. From an evolutionary perspective, intraspecies signalling can be explained using models such as kin selection, but when communication is described between species, it is more difficult to explain. It is probable that in many cases this involves QS molecules being used as 'cues' by other species as a guide to future action or as manipulating molecules whereby one species will 'coerce' a response from another. In these cases, the usage of QS molecules cannot be described as signalling. This review seeks to integrate the evolutionary literature on animal signalling with the microbiological literature on QS, and asks whether QS within bacteria is true signalling or whether these molecules are also used as cues or for the coercion of other cells.  相似文献   

19.
Acquiring signalling specificity from the cytokine receptor gp130   总被引:10,自引:0,他引:10  
Repeated use of a relatively small number of intracellular signalling molecules specifies tissue- and cell-type-specific responses to pleiotropic-acting growth factors and cytokines. Currently, gaining a better understanding of these mechanisms is a major challenge. The IL-6 family of cytokines shares a common receptor subunit called gp130. Phenotypic comparisons of mice with amino acid knock-in substitutions that disable individual signalling modules in gp130, with knockout mice lacking ligand-specific gp130 activation or transgenic mice with constitutive gp130 activation, has led to the identification of two molecular mechanisms. One mechanism is based on differential target-gene responsiveness to signalling threshold levels transduced by either the STAT1/3 or the SHP2/ERK cascade, which are under reciprocal negative regulation and together account for the majority of intracellular gp130 signalling. The second mechanism is based on the capacity of certain cell types to integrate the often-conflicting information transduced by these two pathways, and to prevent pathological responses.  相似文献   

20.
Severe combined immunodeficiency disease (SCID) refers to a spectrum of inherited immunodeficiencies that together represent the most severe forms of primary immunodeficiency in humans. Recent work has shown that many of these diseases, as well as other forms of immunodeficiency, result from defects in cytokine signalling pathways. Such defects can prevent normal development of lymphoid lineages and/or compromise cytokine signalling by these cells. These natural 'experiments' in human genetics have shown the non-redundant role for several cytokines or cytokine signalling molecules. Moreover, a comparison of the phenotypes of humans with SCID to analogous mouse-knockout models has shown not only expected similarities, but also unexpected differences in cytokine signalling between humans and mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号