首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.  相似文献   

2.
Potential applications for reducing transmission of mosquito-borne diseases by releasing genetically modified mosquitoes have been proposed, and mosquitoes are being created with such an application in mind in several laboratories. The use of the sterile insect technique (SIT) provides a safe programme in which production, release and mating competitiveness questions related to mass-reared genetically modified mosquitoes could be answered. It also provides a reversible effect that would be difficult to accomplish with gene introgression approaches. Could new technologies, including recombinant DNA techniques, have improved the success of previous mosquito releases? Criteria for an acceptable transgenic sterile mosquito are described, and the characteristics of radiation-induced sterility are compared with that of current transgenic approaches. We argue that SIT using transgenic material would provide an essentially safe and efficacious foundation for other possible approaches that are more ambitious.  相似文献   

3.
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.  相似文献   

4.
Handler AM 《Genetica》2002,116(1):137-149
The genetic manipulation of non-drosophilid insect species is possible by the creation of recombinant DNA constructs that can be integrated into host genomes by several transposon-based vector systems. This technology will allow the development and testing of a variety of systems that can improve existing biological control methods, and the development of new highly efficient methods. For programs such as sterile insect technique (SIT), transgenic strains may include fluorescent protein marker genes for detection of released insects, and conditional gene expression systems that will result in male sterility and female lethality for genetic sexing. Conditional expression systems include the yeast GAL4 system and the bacterial Tet-off and Tet-on systems that can, respectively, negatively or positively regulate expression of genes for lethality or sterility depending on a dietary source of tetracycline. Importantly, strains for male sterility must also incorporate an effective system for genetic sexing, since typically, surviving females would remain fertile. Models for the use of these expression systems and associated genetic material come from studies in Drosophila and, while many of these systems should be transferable to other insects, continued research will be necessary in insects of interest to clone genes, optimize germ-line transformation, and perform vector stability studies and risk assessment for their release as transgenic strains.  相似文献   

5.
There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT) to control African malaria vectors in designated areas. The SIT relies on the sterilization of males before mass release, with sterilization currently being achieved through the use of ionizing radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The dose-response curve between the induced sterility and log (dose) was shown to be sigmoid, and there was a marked species difference in radiation sensitivity. Mating competitiveness studies have generally been performed under laboratory conditions. The competitiveness of males irradiated at high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively. Methods to reduce somatic damage during the irradiation process as well as the use of other agents or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose chosen for insects that are to be released during an SIT programme should ensure a balance between induced sterility of males and their field competitiveness, with competitiveness being determined under (semi-) field conditions. Self-contained 60Co research irradiators remain the most practical irradiators but these are likely to be replaced in the future by a new generation of high output X ray irradiators.  相似文献   

6.
Traditional chemically based methods for insect control have been shown to have serious limitations, and many alternative approaches have been developed and evaluated, including those based on the use of different types of mutation. The mutagenic action of ionizing radiation was well known in the field of genetics long before it was realized by entomologists that it might be used to induce dominant lethal mutations in insects, which, when released, could sterilize wild female insects. The use of radiation to induce dominant lethal mutations in the sterile insect technique (SIT) is now a major component of many large and successful programs for pest suppression and eradication. Adult insects, and their different developmental stages, differ in their sensitivity to the induction of dominant lethal mutations, and care has to be taken to identify the appropriate dose of radiation that produces the required level of sterility without impairing the overall fitness of the released insect. Sterility can also be introduced into populations through genetic mechanisms, including translocations, hybrid incompatibility, and inherited sterility in Lepidoptera. The latter phenomenon is due to the fact that this group of insects has holokinetic chromosomes. Specific types of mutations can also be used to make improvements to the SIT, especially for the development of strains for the production of only male insects for sterilization and release. These strains utilize male translocations and a variety of selectable mutations, either conditional or visible, so that at some stage of development, the males can be separated from the females. In one major insect pest, Ceratitis capitata, these strains are used routinely in large operational programs. This review summarizes these developments, including the possible future use of transgenic technology in pest control.  相似文献   

7.
The genetic manipulation of agriculturally important insects now allows the development of genetic sexing and male sterility systems for more highly efficient biologically‐based population control programs, most notably the Sterile Insect Technique (SIT), for both plant and animal insect pests. Tetracycline‐suppressible (Tet‐off) conditional lethal systems may function together so that transgenic strains will be viable and fertile on a tetracycline‐containing diet, but female‐lethal and male sterile in tetracycline‐free conditions. This would allow their most efficacious use in a unified system for sterile male‐only production for SIT. A critical consideration for the field release of such transgenic insect strains, however, is a determination of the frequency and genetic basis of lethality revertant survival. This will provide knowledge essential to evaluating the genetic stability of the lethality system, its environmental safety, and provide the basis for modifications ensuring optimal efficacy. For Tet‐off lethal survival determinations, development of large‐scale screening protocols should also allow the testing of these modifications, and test the ability of other conditional lethal systems to fully suppress propagation of rare Tet‐off survivors. If a dominant temperature sensitive (DTS) pupal lethality system proves efficient for secondary lethality in Drosophila, it may provide the safeguard needed to support the release of sexing/sterility strains, and potentially, the release of unisex lethality strains as a form of genetic male sterility. Should the DTS Prosβ21 mutation prove effective for redundant lethality, its high level of structural and functional conservation should allow host‐specific cognates to be created for a wide range of insect species.  相似文献   

8.
1 The sterile insect technique (SIT) involves the release of large numbers of sterile or partially‐sterile insects into a wild pest population to dilute the number of successful wild matings, with the eventual aim of eradication or area‐wide suppression. General population models, encompassing a wide range of SIT types, were used to derive principles for optimizing the success of SIT, with particular emphasis on the application of partial sterility leading to inherited sterility in the F1 population. 2 The models show that inherited sterility can only be guaranteed to be more effective than complete sterility if matings between irradiated‐lineage partners are unsuccessful. This is widely assumed but rarely examined experimentally. 3 The models allow the critical overflooding ratio, φc, to be calculated for a particular target species, suggesting the release rate required to prevent population increase. Successful eradication using SIT alone should aim for a substantially higher release rate than suggested by φc. 4 The models show that pest populations may continue to increase in the first few generations of SIT releases, regardless of release rate, as irradiated‐lineage individuals infiltrate the population. This does not necessarily imply that the SIT programme will be unsuccessful in the longer term. 5For pests with overlapping generations, the models suggest that frequent small releases may be more effective than less frequent large releases, particularly when the average release rate is close to the critical threshold for success.  相似文献   

9.
The sterile insect technique (SIT) is currently being used for the control of many agricultural pests, including some lepidopteran species. The SIT relies on the rearing and release of large numbers of genetically sterile insects into a wild population. The holokinetic chromosomes of Lepidoptera respond differently to radiation than do species where there is a localized centromere. This difference has enabled a variation of the SIT to be developed for Lepidoptera where a substerilizing dose of radiation is given to the insects before their release with the result that a certain level of sterility is inherited by the F1 offspring. The development of genetic sexing strains for fruit flies, enabling the release of males only, has resulted in enormous economic benefits in the mass rearing and has increased the efficiency of the field operations severalfold. This article outlines Mendelian approaches that are currently available to separate large numbers of males and females efficiently for different lepidopteran species and describes their difficulties and constraints. Successful transgenesis in several lepidopteran species opens up new possibilities to develop genetic sexing strains. The proposal to develop genetic sexing strains described in this article takes advantage of the fact that in Lepidoptera, the female is the heterogametic sex, with most species having aWZ sex chromosome pair, whereas the males are ZZ. This means that if a conditional lethal gene can be inserted into the W chromosome, then all females should die after the application of the restrictive condition. The assumptions made to accommodate this model are discussed, and the advantages to be gained for control programs are elucidated.  相似文献   

10.
The production of large numbers of males needed for a sustainable sterile insect technique (SIT) control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross-mating competitiveness tests such as those applied here are necessary to assess the quality of mass reared strains for the trans-border application of sterile male release programs.  相似文献   

11.
Conceptual framework and rationale   总被引:1,自引:0,他引:1  
The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme.  相似文献   

12.
Sterile insect technique (SIT)-based pest control programs rely on the mass release of sterile insects to reduce the wild target population. In many cases, it is desirable to release only males. Sterile females may cause damage, e.g., disease transmission by mosquitoes or crop damage via oviposition by the Mediterranean fruit fly (Medfly). Also, sterile females may decrease the effectiveness of released males by distracting them from seeking out wild females. To eliminate females from the release population, a suitable sexual dimorphism is required. For several pest species, genetic sexing strains have been constructed in which such a dimorphism has been induced by genetics. Classical strains were based on the translocation to the Y chromosome of a selectable marker, which is therefore expressed only in males. Recently, several prototype strains have been constructed using sex-specific expression of markers or conditional lethal genes from autosomal insertions of transgenes. Here, we describe a novel genetic sexing strategy based on the use of Y-linked transgenes expressing fluorescent proteins. We demonstrate the feasibility of this strategy in a major pest species, Ceratitis capitata (Wiedemann), and discuss the advantages and disadvantages relative to other genetic sexing methods and potential applicability to other species.  相似文献   

13.
Though lacking adaptive immunity, insects possess a powerful innate immune system, a genome-encoded defence machinery used to confront infections. Studies in the fruit fly Drosophila melanogaster revealed a remarkable capacity of the innate immune system to differentiate between and subsequently respond to different bacteria and fungi. However, hematophagous compared to non-hematophagous insects encounter additional blood-borne infectious agents, such as parasites and viruses, during their lifetime. Anopheles mosquitoes become infected with the malaria parasite Plasmodium during feeding on infected human hosts and may then transmit the parasite to new hosts during subsequent bites. Whether Anopheles has developed mechanisms to confront these infections is the subject of this review. Initially, we review our current understanding of innate immune reactions and give an overview of the Anopheles immune system as revealed through comparative genomic analyses. Then, we examine and discuss the capacity of mosquitoes to recognize and respond to infections, especially to Plasmodium, and finally, we explore approaches to investigate and potentially utilize the vector immune competence to prevent pathogen transmission. Such approaches constitute a new challenge for insect immunity research, a challenge for global health.  相似文献   

14.
Mosquitoes are vectors for the transmission of many human pathogens that include viruses, nematodes and protozoa. For the understanding of their vectorial capacity, identification of disease carrying and refractory strains is essential. Recently, molecular taxonomic techniques have been utilized for this purpose. Sequence analysis of the mitochondrial 16S rRNA gene has been used for molecular taxonomy in many insects. In this paper, we have analysed a 450 bp hypervariable region of the mitochondrial 16S rRNA gene in three major genera of mosquitoes,Aedes, Anopheles andCulex. The sequence was found to be unusually A + T rich and in substitutions the rate of transversions was higher than the transition rate. A phylogenetic tree was constructed with these sequences. An interesting feature of the sequences was a stretch of Ts that distinguished betweenAedes andCulex on the one hand, andAnopheles on the other. This is the first report of mitochondrial rRNA sequences from these medically important genera of mosquitoes.  相似文献   

15.
Female remating is a widespread behaviour, reported in several insect species. This behaviour can affect the efficiency of sterile insect technique (SIT); however, little is known about the postcopulatory behaviour of some pest species considered as candidates to be controlled by this technique, such as Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). In this study, we investigated the effects of male and female sterilization on mating and remating behaviour of D. suzukii. First, we tested the occurrence of multiple mating in different combinations between sterile and fertile males and females. Then, we tested the effects of male and female sterility on female propensity to mate and remate. We found an overall low remating rate by D. suzukii females. Male sterility did not influence mating and remating likelihood; however, copula duration of sterile males was shorter compared to fertile males. On the other hand, sterile females were less likely to mate. Our findings encourage further research regarding the use of SIT to control D. suzukii.  相似文献   

16.
Franz G  Robinson AS 《Genetica》2011,139(1):1-5
The application of the Sterile Insect Technique (SIT) in area-wide integrated pest management (AW-IPM) programmes continues to increase. However, programme efficiency can still be considerably enhanced when certain components of the technology are improved, such as the development of improved strains for mass rearing and release. These include strains that (1) produce only male insects for sterilization and release and (2) carry easily identifiable markers to identify released sterile insects in the field. Using both classical and modern biotechnology techniques, key insect pests are targeted, where SIT programmes are being implemented. The pests include mosquitoes, the Mexican fruit fly, the codling moth, the oriental fruit fly and the pink bollworm. This special issue summarizes the results of research efforts aimed at the development and evaluation of new strains to a level where a decision can be made as to their suitability for use in large scale SIT programmes. Major beneficiaries will be operational AW-IPM programmes that apply the SIT against major insect pests.  相似文献   

17.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

18.
Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the major Afro‐tropical vector of malaria. Novel strategies proposed for the elimination and eradication of this mosquito vector are based on the use of genetic approaches, such as the sterile insect technique (SIT). These approaches rely on the ability of released males to mate with wild females, and depend on the application of effective protocols to assess the swarming and mating behaviours of laboratory‐reared insects prior to their release. The present study evaluated whether large semi‐field enclosures can be utilized to study the ability of males from a laboratory colony to respond to natural environmental stimuli and initiate normal mating behaviour. Laboratory‐reared males exhibited spatiotemporally consistent swarming behaviour within the study enclosures. Swarm initiation, peak and termination time closely tracked sunset. Comparable insemination rates were observed in females captured in copula in the semi‐field cages relative to females in small laboratory cages. Oviposition rates after blood feeding were also similar to those observed in laboratory settings. The data suggest that outdoor enclosures are suitable for studying swarming and mating in laboratory‐bred males in field‐like settings, providing an important reference for future studies aimed at assessing the comparative mating ability of strains for SIT and other vector control strategies.  相似文献   

19.
  • 1 The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations.
  • 2 The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. The use of gamma radiation to induce sterility, however, negatively affects both somatic cells as well as reproductive cells. Consequently, mating performance of sterilized individuals decreases drastically over time. The mating propensity of sterilized Euscepes postfasciatus (Fairmaire) males irradiated with a single dose of 150 Gy (the current standard of the Okinawa Prefecture SIT programme) is equal to that of non‐irradiated weevils for the first 6 days.
  • 3 Fractionated irradiation, in which a sterilizing dose is delivered over time in a series of smaller irradiations, reduces the damage of irradiation in insects. In the present study, we evaluated the effect of fractionated irradiation on male fertilization ability, longevity and mating propensity of E. postfasciatus for a period of 16 days after irradiation.
  • 4 Although fractionated irradiation totalling 150 Gy was found to induce full sterility regardless of the number of individual doses, the mating propensity of male weevils sterilized by fractionated irradiation was maintained for the first 12 days. These results demonstrate that fractionated irradiation can be highly advantageous in programmes aimed at eradication of E. postfasciatus.
  相似文献   

20.
Aedes aegypti L. (Diptera: Culicidae), being the primary vector of pathogenic arboviruses, is a target for the development of novel genetic approaches to complement current conventional vector control strategies such as the combined sterile insect and incompatible insect technique (SIT/IIT). A transinfected line of Ae. aegypti carrying the wAlbB Wolbachia strain (WB2) was introgressed into two genomic backgrounds, Brazil and Mexico, producing two new Ae. aegypti strains (WB2-BRA and WB2-MEX). These strains were evaluated with respect to several life-history traits such as fecundity, fertility, longevity, pupa size, pupation curve, and male mating competitiveness, as well as their response to irradiation. Our results show that the impact of Wolbachia infection depends on the genomic background and that the Brazilian one had no significant effect, whereas the Mexican one negatively affected fertility, longevity, and pupal size. Interestingly, Wolbachia-infected Ae. aegypti lines required a lower irradiation dose to achieve complete female sterility than the uninfected ones. The present findings are discussed given the potential use of Wolbachia-infected Ae. aegypti lines in combined SIT/IIT population suppression programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号